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Mihai Cipu and Yasutsugu Fujita

IMAR, Romania and Nihon University, Japan

Abstract. A set of m positive integers {a1, . . . , am} is called a Dio-
phantine m-tuple if the product of any two elements in the set increased
by one is a perfect square. The conjecture according to which there does
not exist a Diophantine quintuple is still open. In this paper, we show that
if {a, b, c, d, e} is a Diophantine quintuple with a < b < c < d < e, then

b > 3 a; moreover, b > max{21 a, 2 a3/2} in case c > a+ b+ 2
√
ab+ 1.

1. Introduction

A set of m positive integers {a1, . . . , am} with the property that the prod-
uct of any two elements in the set increased by one is a perfect square is called
a Diophantine m-tuple.

The first example {1, 3, 8, 120} of a Diophantine quadruple was found by
Fermat. In general, for a given Diophantine triple {a, b, c}, the set {a, b, c, d+}
is always a Diophantine quadruple, where

d+ = a+ b+ c+ 2abc+ 2
√

(ab+ 1)(ac+ 1)(bc+ 1)

(see [1]). A set of the type {a, b, c, d+} is called a regular Diophantine quadru-
ple. Fermat’s set {1, 3, 8, 120} is regular, and, according to [17], in [18] and
independently in [1] it is conjectured that any Diophantine quadruple is reg-
ular, implying the folklore conjecture that there does not exist a Diophantine
quintuple. In [8] Dujella obtained results very close to settling this conjecture
by proving that there does not exist a Diophantine sextuple and that there
exist only finitely many Diophantine quintuples. Later bounds on the num-
ber of Diophantine quintuples are provided in [9,11,16]. Historical and recent
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developments of the study of Diophantine m-tuples are found on Dujella’s
webpage: http://web.math.pmf.unizg.hr/∼duje/dtuples.html.

The existence of Diophantine sets boils down to solving systems of gen-
eralized Pell equations. Recently, the first author ([6, Lemma 2.4]; see also
Lemma 3.4 below) improved the lower bound for hypothetical solutions to the
system relevant in the study of Diophantine quintuples (note that a similar
assertion is obtained in [23]). Using this lemma, he investigated the proper-
ties that Diophantine quintuples should have, and in particular updated the
known upper bounds for the fourth element d ([6, Theorem 2.1]) and for the
number of Diophantine quintuples ([6, Theorem 1.3]).

The aim of this paper is to show the non-existence of Diophantine quintu-
ples such that the two smallest elements are rather close to each other. More
precisely, we prove the following.

Theorem 1.1. There exists no Diophantine quintuple {a, b, c, d, e} with

a < b < c < d < e and b ≤ 3 a.

Theorem 1.2. There exists no Diophantine quintuple {a, b, c, d, e} with

a < b < c < d < e, c > a+ b+ 2
√
ab+ 1 and b ≤ max{21 a, 2 a3/2}.

In addition to the above mentioned result [6, Lemma 2.4], a key role in
our deliberations plays an amelioration (Theorem 2.2 in Section 2) of Rick-
ert’s theorem (see [21]; cf. also [5, Theorem 3.2], [12, Theorem 2.5]). The
improvements were obtained by adjusting an idea found in Bennett’s paper
[3] to our situation. The proofs of Theorems 1.1 and 1.2 are given in the last
section.

2. A version of Rickert’s theorem

For any irregular quadruple {a, b, c, d} with a < b < c < d, a lower bound
for the second element b has been obtained by using a version ([10, Lemma
5]) of the Baker-Davenport reduction method ([2, Lemma]) in the proof of
[13, Theorem 1.2]. Computations performed in order to establish the above
mentioned theorem (and described at length on the last page of [13]) can be
summarized as follows.

Lemma 2.1. Suppose that {a, b, c, d} is a Diophantine quadruple with a <
b < c < d+ < d.

• If b < 2a, then b > 21000.
• If 2a ≤ b ≤ 8a, then b > 130000.
• If b > 8a, then b > 2000.

As already mentioned, the existence of Diophantine sets hinges on the
solvability of a certain system of generalized Pell equations. It is also well
known that solutions to such systems appear as common terms to several
second-order linear recurrent sequences. In order to get a better upper bound
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for the index of appearance of a hypothetical solution in the relevant sequence,
we slightly improve [12, Theorem 2.5], which is a version of Rickert’s theorem
([21]).

Theorem 2.2. Let a, b and N be integers with 0 < a ≤ b−5, b > 2000 and
N ≥ 3.706a′b2(b− a)2, where a′ = max{b− a, a}. Assume that N is divisible

by ab. Then the numbers θ1 =
√

1 + b/N and θ2 =
√

1 + a/N satisfy

max

{∣

∣

∣

∣

θ1 −
p1
q

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
p2
q

∣

∣

∣

∣

}

>

(

1.413 · 1028a′bN
a

)−1

q−λ

for all integers p1, p2, q with q > 0, where

λ = 1 +
log(10a−1a′bN)

log(2.699a−1b−1(b − a)−2N2)
< 2.

The proof of the original result, as well as of all subsequent versions of it,
relies on a very general construction recalled below.

Lemma 2.3. ([5, Lemma 3.1]) Let θ1, . . . , θm be arbitrary real numbers

and θ0 = 1. Assume that there exist positive real numbers l, p, L and P
with L > 1 such that for each positive integer k, we can find integers pijk
(0 ≤ i, j ≤ m) with nonzero determinant,

|pijk| ≤ pP k (0 ≤ i, j ≤ m)

and
∣

∣

∣

∣

∣

∣

m
∑

j=0

pijkθj

∣

∣

∣

∣

∣

∣

≤ lL−k (0 ≤ i ≤ m).

Then

max

{∣

∣

∣

∣

θ1 −
p1
q

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

θm − pm
q

∣

∣

∣

∣

}

> cq−λ

holds for all integers p1, . . . , pm, q with q > 0, where

λ = 1 +
logP

logL
and c−1 = 2mpP (max{1, 2l})λ−1

.

Proof of Theorem 2.2. We apply Lemma 2.3 with m = 2 and θ1, θ2
as in Theorem 2.2. For 0 ≤ i, j ≤ 2 and arbitrary integers ai (which will be
specialized to 0, a and b in due time), let pij(x) be the polynomial defined by

pij(x) =
∑

ij

(

k + 1
2

hj

)

(1 + ajx)
k−hjxhj

∏

l 6=j

(

−kil
hl

)

(aj − al)
−kil−hl ,

where kil = k + δil with δil the Kronecker delta,
∑

ij denotes the sum over
all non-negative integers h0, h1, h2 satisfying h0 + h1 + h2 = kij − 1, and
∏

l 6=j denotes the product from l = 0 to l = 2 omitting l = j (which is the
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expression (3.7) in [21] with ν = 1/2). As seen in the proof of [12, Theorem
2.5], we have

f(x) := 22k−1
∏

l 6=j

(aj − al)
kil+hlpij(x) ∈ Z[x].

Noting
(

−kil
hl

)

= (−1)hl

(

kil + hl − 1
hl

)

,

we see from [4, Lemma 4.1] (or [3, Lemma 3.2]) that P2(k) divides the greatest
common divisor, denoted by Π2(k), of the coefficients of f(x), where P2(k)
is the product over all primes p satisfying p >

√
2k + 1, gcd(p, 2k) = 1 and

{(k − 1)/p} > 3/4 (as usual, {t} denotes the fractional part of a real number
t); in particular, we have Π2(k) ≥ P2(k). Denoting by Jl(k) the open interval
((k − 1)/l, 4(k − 1)/(4l− 1)), we obtain

P2(k) ≥

[

k−1√
2k−1

]

∏

l=1

∏

p∈Jl(k)

gcd(p,2k)=1

p.(2.1)

Now we appeal to Corollary 2∗ of Theorem 7∗ (the case (c, d) = (15, 70877)
in the table) and the Note added in proof from [22] in order to get a lower
bound for the right-hand side of (2.1). If k ≥ 903683, then

13
∑

l=1

∑

p∈Jl(k)

gcd(p,2k)=1

log p >

13
∑

l=1

(

4

4l − 1
− 4

15(4l− 1) log 4(k−1)
4l−1

− 1.000081

l

)

(k − 1)

− log k

> 0.47064(k− 1)− log k > 0.4706k,

which implies that Π2(k) > e0.4706k > 1.6k. For each 1 ≤ k ≤ 903682, put

g(k) =

[

k−1√
2k+1

]

∑

l=1

∑

p∈Jl(k)

gcd(p,2k)=1

log p− k log 1.6.

Then, with the help of a computer we find that g(k) > −31.342, where the
minimal value of g(k) is attained in the case of k = 607. This estimate yields

Π2(k) >
1.6k

e31.342
>

1.6k

4.09 · 1013 ,(2.2)

which also holds for k ≥ 903683.
If we take a0 = 0, a1 = a and a2 = b, the proof of [12, Theorem 2.5] shows

that

pijk := 2−1[4ab(b− a)2N ]kΠ2(k)
−1pij(1/N) ∈ Z,
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which together with (2.2) and the proof of [15, Theorem 21] implies that

|pijk| < pP k,

∣

∣

∣

∣

∣

∣

2
∑

j=0

pijkθj

∣

∣

∣

∣

∣

∣

< lL−k,

where

p =
4.09 · 1013

2

(

1 +
a′

2N

)1/2

< 2.046 · 1013,

P =
32
(

1 + 3b−a
2N

)

ab(b− a)2N

1.6ζ
<

10a′bN

a
(

ζ =

{

a2(2b− a) if b− a ≥ a,

(b− a)2(a+ b) if b− a < a

)

,

l =
4.09 · 1013

2
· 27
64

(

1− b

N

)−1

< 8.628 · 1012,

L =
1.6

4ab(b− a)2N
· 27
4

(

1− b

N

)2

N3 >
2.699N2

ab(b− a)2
.

Moreover, the assumption N ≥ 3.706a′b2(b− a)2 implies that

λ = 1+
log(10a−1a′bN)

log(2.699a−1b−1(b− a)−2N2)
< 2

and

c−1 < 4 · 2.046 · 1013 · 10a
′bN

a

(

17.256 · 1012
)λ−1

<
1.413 · 1028a′bN

a
.

This completes the proof of Theorem 2.2.

3. Proofs of the main results

Let {a, b, c} be a Diophantine triple with a < b < c and r, s, t the positive
integers satisfying ab + 1 = r2, ac + 1 = s2, bc + 1 = t2. Assume that
{a, b, c, d} is a Diophantine quadruple. Then, there exist positive integers
x, y, z satisfying ad + 1 = x2, bd + 1 = y2, cd + 1 = z2. Eliminating d from
these equations, we obtain the following system of generalized Pell equations

az2 − cx2 = a− c,(3.1)

bz2 − cy2 = b− c.(3.2)
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The solutions of equations (3.1) and (3.2) can be respectively expressed as
z = vm and z = wn with positive integers m and n, where

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,(3.3)

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn.(3.4)

Lemma 3.1. (cf. [7, Lemma 12]) Let N = abc and let θ1, θ2 be as in The-

orem 2.2. Then all positive solutions of the system of Diophantine equations

(3.1) and (3.2) satisfy

max

{∣

∣

∣

∣

θ1 −
sbx

abz

∣

∣

∣

∣

,

∣

∣

∣

∣

θ2 −
tay

abz

∣

∣

∣

∣

}

<
c

2a
z−2.

Lemma 3.2. Suppose that there exist integers m ≥ 3 and n ≥ 2 such

that z = v2m = w2n and |z0| = 1, and that c ≥ 3.706a′b(b − a)2/a. Then,

log z > n log(4bc).

Proof. One can prove this lemma in the same way as [7, Lemma 25]
(see also the proof of [12, Lemma 2.10]).

Now we are ready to obtain an upper bound for the solution.

Lemma 3.3. Suppose that there exist integers m ≥ 3 and n ≥ 2 such that

z = v2m = w2n and |z0| = 1, and that c ≥ 3.706a′b(b− a)2/a. Then,

n <
4 log(8.406 · 1013a1/2(a′)1/2b2c) log(1.643a1/2b1/2(b− a)−1c)

log(4bc) log(0.2699a(a′)−1b−1(b − a)−2c)
.

Proof. By Lemma 2.1, we may apply Theorem 2.2 with q = abz, p1 =
sbx, p2 = tay, and N = abc. In view of Lemma 3.1, we have

z2−λ < 0.7065 · 1028aa′b4c2 < (8.406 · 1013a1/2(a′)1/2b2c)2.
From

1

2− λ
=

log(2.699ab(b− a)−2c2)

log 2.699a(b−a)−2c
10a′b

<
2 log(1.643a1/2b1/2(b− a)−1c)

log(0.2699a(a′)−1b−1(b− a)−2c)

and Lemma 3.2 we obtain the asserted inequality.

We need a recent improvement on the lower bound for the solution. Its proof
is similar to the proof of [23, Lemma 2].

Lemma 3.4. ([6, Lemma 2.4]) If there exist integers m ≥ 3 and n ≥ 2
such that z = v2m = w2n and |z0| = 1, then m > 0.5b−1/2c1/2.

The following is useful to refine some estimates for the solutions.

Lemma 3.5. If {a, b} is a Diophantine pair with b > a+ 2, then

b− a ≥ 2
√
a+ 1 + 1.
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Proof. The assumption b−a > 2 implies a+ b− 2r ≥ 1, from which the
assertion can be easily deduced.

Proof of Theorem 1.1. Assuming the contrary, we will show a contra-
diction. First of all, we note that if we replace “c” in (3.1), (3.2), (3.3), (3.4)
by “d”, then z = v2m = w2n and |z0| = 1 hold for some m ≥ 3 and n ≥ 2 (see
the part just before the proof of [12, Theorem 2.1]).

Suppose first that b < 2a. Then a′ = a and b− a < b/2. Since

3.706 a′b(b− a)2

a
< 3.706 b · b

2

4
= 0.9265 b3,

d > 4 abc > 4 · b
2
· b(a+ b+ 2r) > 2

(

1

2
+ 1 +

√
2

)

b3 > 5.8284 b3,

we can apply Lemma 3.2 with c replaced by d. By Lemma 3.5 (which can be
applied thanks to the main result in [14]) we have

a1/2(b− a)−1 ≤
√
a

2
√
a+ 1 + 1

< 0.5,

which together with Lemma 3.3 implies

n <
4 log(8.406 · 1013b3d) log(0.8215 b1/2d)

log(4bd) log(1.0796 b−3d)
.

Since the right-hand side is a decreasing function of d and d > 5.8284 b3, we
have

n <
4 log(4.9 · 1014b6) log(4.789 b7/2)

log(23.3136 b4) log(6.292)
< h1(b),

where

h1(b) =
21 log(280.78 b) log(1.565 b)

log(2.197 b) log(6.292)
.

On the other hand, we know by Lemma 3.4 with m ≤ 2n that

n > 0.25b−1/2d1/2 > 0.6035 b,

which implies 0.6035 b < h1(b). Therefore we obtain b < 200, which contra-
dicts Lemma 2.1.

Suppose secondly that 2a ≤ b ≤ 3a, so that a′ = b− a ≤ 2b/3. Since

3.706 a′b(b− a)2

a
= 3.706 · b

a
· (b− a)3 < 3.295 b3,

d > 4abc ≥ 4 · b
3
· b(a+ b + 2r) > 3.317 b3,
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we can apply Lemma 3.2 with d instead of c. Since a′ = b − a ≤ 2b/3, and
a1/2(b − a)1/2 ≤ b/2 by the arithmetic mean-geometric mean inequality, we
see from Lemma 3.3 that

n <
4 log(4.203 · 1013b3d) log(2.3236 d)

log(4 bd) log(0.3036 b−3d)
.

In a similar way to the above, we have d > 3.317 b3 and n < h2(b), where

h2(b) =
18 log(227.712 b) log(1.976 b)

log(1.908 b) log(1.007)
,

which together with n > 0.4553 b shows that 0.4553 b < h2(b). Therefore we
obtain b < 97000, which contradicts Lemma 2.1. This completes the proof of
Theorem 1.1.

Proof of Theorem 1.2. Once again, we argue by reduction to absurd.
By [19, Lemma 4], if c > a + b + 2r then actually c > 4 ab. Having in view
Theorem 1.1, we may also assume that b > 3 a. Hence, a′ = b− a.

First suppose b ≤ 21a. Then we find

3.706 a′b(b− a)2

a
= 3.706 · b

a
· (b− a)3 < 67.23 b3,

d > 4 abc > 16 a2b2 ≥ 0.0362 b4.

Since b > 2000 according to Lemma 2.1, the hypothesis of Lemma 3.3 is
fulfilled.

From 3 a < b it results a1/2b1/2(b− a)−1 <
√
3/2, while the upper bound

on b in terms of a entails ab−1(b−a)−3 > 212 b−3/203. Using these inequalities,
Lemma 3.3 yields

n <
4 log(4.203 · 1013b3d) log(1.4229 d)

log(4 bd) log(67.2123−1b−3d)
.

As the right side of the previous relation is a function decreasing in d, for
d > 0.0362 b4 one obtains

n <
22.4 log(54.996 b) log(0.4764 b)

log(0.6794 b) log(1856.7−1b)
.

This upper bound on n is compatible with the lower bound n > b3/2/21
derived with Lemma 3.4 only for b < 1980. Thus, Lemma 2.1 leads us to a
contradiction.

Suppose secondly b ≤ 2a3/2. Since

3.706a′b(b− a)2

a
<

3.706 b4

(b/2)2/3
< 5.883 b10/3,

d > 16 (b/2)4/3b2 > 6.349 b10/3,
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we may apply Lemma 3.3, and thereby obtain

n <
4 log(4.203 · 1013b3d) log(1.4229 d)

log(4 bd) log(0.17002 b−10/3d)
.

Similarly to the first case, d > 6.349 b10/3 implies

n <
760 log(189.597 b) log(1.936 b)

39 log(2.109 b) log(1.0794)
.

Comparing this upper bound with n > 2−2/3b7/6 deduced from Lemma 3.4,
we obtain b < 1490. As this range is prohibited by Lemma 2.1, the proof of
Theorem 1.2 is complete.

At the request of the referee, we close with a few remarks on the unique-
ness of the extension of a Diophantine triple {a, b, c} (a < b < c) with a and
b very close to each other, such as b ≤ 3 a or b ≤ max{21 a, 2 a3/2}, where we
proved the non-extendibility to a Diophantine quintuple.

The main technical obstacle which presently prevents to obtain such a
result is the non-availability of a lower bound on indices m and n for which
vm = wn as powerful as that given in Lemma 3.4 and which should be valid
for all combinations odd-even. The best lower bounds proved so far for mn
odd are of order b−3/4c1/4 (see [6, 13]). Clearly, such a bound is irrelevant in
our problem unless c ≈ bα with α sensibly greater than 3. Moreover, a small
gap between b and c does not even allow one to show that the indices m and
n have the same parity.

Acknowledgements.

The second author was partially supported by JSPS KAKENHI Grant
Number 25400025. Both authors are grateful to an anonymous referee for
suggestions included in the final version of the paper.

References

[1] J. Arkin, V. E. Hoggatt and E. G. Strauss, On Euler’s solution of a problem of

Diophantus, Fibonacci Quart. 17 (1979), 333–339.
[2] A. Baker and H. Davenport, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2, Quart. J.

Math. Oxford Ser. (2) 20 (1969), 129–137.
[3] M. A. Bennett, Simultaneous approximation to pairs of algebraic numbers, in: CMS

Conf. Proc. 15 (1995), 55–65.
[4] M. A. Bennett, Simultaneous rational approximation to binomial functions, Trans.

Amer. Math. Soc. 348 (1996), 1717–1738.
[5] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine

Angew. Math. 498 (1998), 173–199.
[6] M. Cipu, Further remarks on Diophantine quintuples, Acta Arith. 168 (2015), 201–

219.
[7] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number Theory

89 (2001), 126–150.
[8] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew.

Math. 566 (2004), 183–214.



34 M. CIPU AND Y. FUJITA

[9] A. Dujella, On the number of Diophantine m-tuples, Ramanujan J. Math. 15 (2008),
37–46.
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