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INTRODUCTION

In several practical cases, the ultimate ductile frac-

ture strain determined with tensile test is accepted as a

material plasticity measure �1�. In this case, the plastic-

ity has to be defined as an ability of a material to accom-

modate high permanent strains until fracture appears

where this strain reaches certain value called ultimate

fracture strain �p. The strain value until fracture depends

not only on the material type, but also on other several

factors, as: strain speed, strain history, material starting

structure, temperature, specimen geometry, etc. It is im-

possible to account for all factors in a single mathemati-

cal description, due to a complexity of phenomena and

an insufficient state of the art, mainly for phenomena

present during a plastic strain. Several experiments �2-5�
have demonstrated that the material fracture process

strongly depends on the hydrostatic stress. This conclu-

sion has been independently induced based on experi-

ments �6-8�.
Recently, several different fracture criteria, includ-

ing the state of hydrostatic stress, have been developed

�8-10�. However, the practical application of above cri-

teria to forecast the fracture during the metal forming

process has been feasible thanks the numerical comput-

ing methods, which enable to determine the material’s

state of stress during the plastic forming process. Cur-

rently, the ductile fracture criteria are commonly used

when simulating various plastic processing processes

�10-13�. However, the practical application of the crite-

ria requires the experimental determination of the duc-

tile fracture strain �p value for a given material. This

strain is usually determined based on the tensile test, but

the determination method indeed is not so obvious, and

in several cases even doubtful.

In most cases, the tensile test is performed against

circular or rectangular cross-section specimens. Con-

sidering that the ductile fracture strain �p around the

fracture zone equals the equivalent strain �z in this zone,

it can be calculated using the equation:
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For circular cross-section specimen (Figure 1a), the

strain components in direction 1 and 2 are calculated us-

ing the equation:
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The ultimate ductile fracture strain determination method for the specimen of circular cross-section has been
presented by FEM method. The state of stress in individual locations of tensile tested specimen in successive
process phases has been determined unequivocally with the stress triaxiality k. It has been demonstrated that
the plane specimen’s fracture strain value in the fracture location varies and depends on the state of stress,
which is present in the final specimen’s tension phase. The ductile fracture strain values in various fracture loca-
tions for steel, copper and aluminum specimen have been experimentally determined and compared. The sim-
ple and practical method to determine this strain has been proposed.
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The strain component in direction 3 is calculated us-

ing the constant volume condition:

� � � � ��1 2 30 2� � � � �	 (3)

If (2) and (3) are substituted to (1) and transformed,

the equation to determine the ductile fracture strain �p

for circular cross-section specimen is achieved.
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If a tensile tested specimen is plane (Figure 1b), the

strain components in directions 1 and 2 are different and

may be calculated using the equation:
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The strain component in direction 3 is calculated us-

ing the equation:

� � � � � ��1 2 3 1 20� � � � �	 �( ) (7)

If (5), (6) and (7) are substituted to (1), the equation

to determine the ductile fracture strain p for rectangular

cross-section specimen is achieved:
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The equation (8) has been derived provided that the

specimen’s cross-section shape is not changed after the

strain. Actually, the specimen’s cross-section shape af-

ter the tensile failure differs significantly from the start-

ing shape (Figure 2a). After the tensile failure, the plane

specimen’s cross-section has a shape of a saddle (Figure

2b), and it means that the ductile fracture strain value is

not identical within the cross-section, but varies signifi-

cantly. That’s why the calculation of the ductile fracture

strain �p for plane specimen is not so obvious, as for the

circular cross-section specimen.

The lack of reference data how to proceed in this

case has been a basis to perform the experiments, in or-

der to develop the method to specify the ductile fracture

strain �p for rectangular cross-section specimens.

EXPERIMENTAL WORK

The static tensile test has been performed using UTS

100 tensile testing machine. The plane sheet metal spec-

imens have been tested made of the following material:

steel, copper, and aluminum 5 251. The mechanical

characteristics and the strain hardening curve parame-

ters for tested materials, achieved based on the tensile

test, have been presented in Table 1. In order to deter-

mine material constants K and n, the specimen elonga-

tion has been measured using the extensometer along

the section l0 = 80 mm. Then the strain hardening curve

�p = f(�) has been plotted for the points below maximum

tension force. The stress �p for individual strain harden-

ing curve points has been calculated as the ratio of the

force to the variable specimen cross-section, calculated

based on the constant volume condition. The logarith-

mic strain for individual strain hardening curve points

has been calculated from the equation � = ln(l/l0), where:

l0 = 80 mm, l – the length of section after specimen elon-

gation. The strain hardening curve points calculated this

way have been approximated with an equation �p = K�
n.

The measuring bases to indicate the measuring zone

have been marked on the specimen surface. L, P – Lat-

eral, S – Middle (Figure 3). The zone width and speci-

men thickness have been measured in these locations

before and after the specimen tensile failure. The geo-

metrical values have been measured using the

toolmaker’s microscope with an accuracy of 0,01 mm.

The average specimen thickness g1 after the tensile fail-

ure within individual areas (L, P, and S, C) has been de-

termined as follows:

1) the specimen thickness has been measured after

the tensile failure in examined areas, with an in-

terval of approx. 0,5 mm on specimen width,

2) thickness g1 has been calculated as an arithmeti-

cal mean of measured thickness values within in-

dividual areas.

The measured values of geometrical parameters in

individual locations before and after the specimen ten-
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Figure 1 Typical tensile specimens: a) a round specimen,
b) a flat specimen

Figure 2 Cross-sectional area in the neck at fracture:
a) before fracture, b) after fracture

Table 1 Mechanical properties of materials tested

Material
Yield
stress

Re /MPa

Ultimate
strength

Rm /MPa

Strain har-
dening co-
efficient

Strain har-
dening ex-

ponent

K /MPa n

steel 399 447 591 0,072

copper 97 217 389 0,262

aluminium 65 175 378 0,31



sile failure, for individual materials have been stated in

Table 2. Then for all measured zones, the strain value �1

and strain value �2 have been calculated using (5) and

(6), and then the ductile fracture strain values in an indi-

vidual zones have been calculated using (8) (Table 2).

The analysis of the fracture strain value �p for indi-

vidual materials demonstrates that, for all cases, the

highest strain appears in the middle part of specimen,

and the lowest in the lateral part. The experiments per-

formed show that the more plastic material is (in this

case - copper), the higher fracture strain value �p differ-

ence. For aluminum and copper specimen, both the

strain �1 in direction 1 (specimen width) and the strain �2

in direction 2 (specimen thickness) achieve the highest

value in zone S, its middle part. Whereas for the steel

specimen, the highest strain �2 appears in direction 2

(specimen thickness) in zone S, and in direction 1 (spec-

imen width) strain �1 is slightly lower than in its middle

part (Table 2).

It is also supposed that the differences between

strains in the middle and lateral part of the specimen will

increase as the specimen width is increased. The mean

strain value measured for an entire specimen is inaccu-

rate and depends mainly on its geometry. The following

question arises: where the fracture strain for the plane

specimens should be measured?

FEM NUMERICAL SIMULATION

To answer the question as referred to the above, the

steel specimen tension process numerical simulation has

been performed using MSC Marc Mentat software,

which enables solving non-linear and contact problems.

FEM simulation’s geometrical model has been created

based on the experimental model. The purpose of the

numerical simulation in this case is neither detailed

analysis of stresses and strains nor determining their val-

ues. The purpose of the simulation is to indicate the area,

where the state of stress on the tensioned specimen is the

closest to uniaxial tension, within an entire strain range

up to specimen tensile failure. Therefore the specimen

tension process has been analyzed in the plane stress

condition. The elastic-plastic material model with

non-linear strain hardening has been adopted, described

by the following equation �14�:

�
� � �

� � �
�

� �

� �

�
�
�

E

K n

( )

( )

0

0

(9)

The material parameters for elastic strain have been

as follows: E = 210000 MPa, = 0,3. The strain harden-

ing parameters K, n are presented in Table 1. In order to

create FEM grid of deformable sheet metal, Class 4

Type 3 elements has been used – plane-stress quadrilat-

eral �15�. The start point of necking has been determined

based on Hill’s equation in form of �16�:

�
�

*
( )

�
�

n

1
(10)

where: �* - critical strain for the onset of local necking,

� �3 �1, n - strain hardening exponent.

The tension simulations have been performed for an

entire specimen, placed in the measuring area of an

extensometer (II) holding the griping area of the speci-

men, right at the tensile testing machine grips. Such a pur-

poseful placement of the extensometer (II) enabled the in-

troduction of the movement boundary condition for the

specimen modeled as in the experiment. This also en-

abled eliminating the machine structure susceptibility er-

rors. The boundary condition has been also introduced for

nodes placed at the ends of modeled specimen in the mea-

suring area of an extensometer (II). The node movements

towards the specimen axis have been forced in the bound-

ary condition. The node movement perpendicularly to-

wards the specimen has been disallowed.
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Figure 3 Tensile specimen with marked control lines

Table 2 Specimen’s geometry and average strain va-
lues in analyzed regions

Ma
te-
rial

Designation of
parametr

Measuring zones

L, P
lateral

S
middle

C total

St
ee

l

values of
geome-

trical pa-
rameters

�mm�

go 3,55 3,55 3,55

bo 2,1 2 14,92

g1 2,34 1,7 2,2

b1 1,47 1,56 10,97

plastic
strain

�1 -0,357 -0,248 -0,307

�2 -0,417 -0,736 -0,564

�p 0,774 1,024 0,884

C
o

p
p

er

values of
geome-

trical pa-
rameters

�mm�

go 3,55 3,55 3,55

bo 2,1 2,1 14,85

g1 1,27 0,98 1,12

b1 1,51 1,48 10,05

plastic
strain

�1 -0,32 -0,35 -0,39

�2 -1,028 -1,278 -1,154

�p 1,416 1,724 1,606

A
lu

m
in

iu
m

values of
geome-

trical pa-
rameters

�mm�

go 3,55 3,55 3,55

bo 2,1 2,25 14,78

g1 2,1 1,75 1,95

b1 1,81 1,93 11,75

plastic
strain

�1 -0,148 -0,153 -0,229

�2 -0,525 -0,707 -0,599

�p 0,707 0,918 0,855



Due to such an assumed boundary condition, the lo-

cal necking appears exactly halfway the length of

tensioned specimen.

The tension simulation has been performed until spec-

imen tensile failure, and it corresponds to extensometr

(II) displacement, which was 15,33 mm for the steel spec-

imen. The tensile force curves have been prepared and

compared (Figure 4) in order to validate the FEM simula-

tion. The limit value of ductile fracture strain depends on

the present state of stress. In the mechanical & mathemat-

ical modeling approach, non-dimensional stress

triaxiality k = �m/�H, where �m is a mean normal stress, �H

is an equivalent stress, is the very important parameter,

which unequivocally specifies the plane state of stress

(Figure 5). If this factor is known, it is possible to deter-

mine the state of stress in any point of strained object,

e.g.: if k = 0 – this is a simple shear (Figure 5.c), k = 0,66 –

it is a biaxial regular tension (Figure 5.e), k = - 0,33 – it is

an uniaxial compression (Figure 5.b), etc.

In considered case we determine the strain for the

tensile test, so that k factor value is 0,33. As seen in FEM

calculations, the uniaxial state of stress is present in an

initial tension phase and lasts until the neck is created,

and then once Rm limit is exceeded, the states of stress in

individual zones differ significantly (Figure 6).

The state of stress in the lateral zone L changes

slightly in the biaxial tension direction, reaching k =

0,36 in its final phase. Whereas the state of stress in the

middle zone S changes significantly in the simple shear

direction, reaching k = 0,106 in its final phase.

The state of stress factor k distribution in the initial

and final phase of the specimen tensile test has been pre-

sented on Figure 7. The k factor value is explicitly dif-

ferent in the middle and lateral part of the specimen un-

der test.

CONCLUSIONS

1. The experiments performed show that the frac-

ture strain in the tensile test for plane specimen
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Figure 4 Comparison of the tensile force-experimental
and numerical results (steel specimen)

Figure 5 The k factor values for an individual plane stress
cases: a) biaxial compression, b) uniaxial com-
pression, c) simple shear, d) uniaxial tension, e)
biaxial tension

Figure 6 Comparison of stress triaxiality in different spe-
cimen zone: L, P – lateral, S - middle

Figure 7 Distribution of stress triaxiality k: a) initial phase
of tensile test (3-item), b) final phase of tensile
test (20-item)



must be determined in L or P zone, as the state of

stress in these zones is the closest to the uniaxial

tension for all tensile test.

2. The calculation of the ductile fracture strain for

an entire cross-section C is highly inaccurate and

the error mostly depends on the specimen dimen-

sions.

3. The presented method of the ductile fracture

strain determination is simple and can be per-

formed during the conventional tensile test, once

the base line is marked on the specimen surface.
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