Modelling with twice continuously differentiable functions
Abstract
Many real life situations can be described using twice continuously differentiable functions over convex sets with interior points. Such functions have an interesting separation property: At every interior point of the set they separate particular classes of quadratic convex functions from classes of quadratic concave functions. Using this property we introduce new characterizations of the derivative and its zero points. The results are applied to the study of sensitivity of the Cobb-Douglas production function. They are also used to describe the least squares solutions in linear and nonlinear regression.
Key words: twice continuously differentiable function, zero derivative point, separation property of functions, Cobb-Douglas production function, least squares solution, Newton's second law
Downloads
Additional Files
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).