Multiple ellipse fitting by center-based clustering
Abstract
This paper deals with the multiple ellipse fitting problem based on a given set of data points in a plane. The presumption is that all data points are derived from k ellipses that should be fitted. The problem is solved by means of center-based clustering, where cluster centers are ellipses. If the Mahalanobis distance-like function is introduced in each cluster, then the cluster center is represented by the corresponding Mahalanobis circle-center. The distance from a point $a \in \mathbb{R}^2$ to the Mahalanobis circle is based on the algebraic criterion. The well-known k-means algorithm has been adapted to search for a locally optimal partition of the Mahalanobis circle-centers. Several numerical examples are used to illustrate the proposed algorithm.Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).