Data mining approach in detecting inaccurate financial statements in government-owned enterprises
Abstract
The study aims to assess the capability of various data mining techniques in detecting inaccurate financial statements of government-owned enterprises operating in the Federation of Bosnia and Herzegovina (FBiH). Inaccurate financial statements indicate potential financial fraud. Prediction models of four classification algorithms (J48, KNN, MLP, and BayesNet) were examined using a dataset comprising 200 audited financial statements from government-owned enterprises under the supervision of the Audit Office of the Institutions in the Federation of Bosnia and Herzegovina. The results obtained through data mining analysis reveal that a dataset encompassing seven balance sheet items provides the most comprehensive depiction of financial statement quality. These seven attributes are: opening entry of accounts receivable, profit (loss) at the end of the period, operating assets at the end of the period, accounts receivable at the end of the period, opening entry of operating assets, short term financial investments at the end of the period, and opening entry of short-term financial investments. By employing these seven attributes, the MLP algorithm was implemented to construct the most precise predictive model, achieving a 76% accurate classification rate for financial statements. Leveraging the identified attributes, a mathematical model could potentially be formulated to effectively predict financial statements of government-owned enterprises in FBiH. This, in turn, could considerably facilitate the process of selecting GOEs for inclusion in the annual work plan of state auditors. Presently, due to resource constraints, government-owned enterprises in FBiH do not undergo regular annual scrutiny by state auditors, with only 10 to 15 such enterprises being subject to audits each year. The results of this research can also be beneficial to both the public and the Financial Intelligence Agency in the FBiH. The paper contributes to filling the gap in the literature regarding the applied methodology, particularly in the part concerning the attributes used in the research.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).