Research project grouping and ranking by using adaptive Mahalanobis clustering
Abstract
The paper discusses the problem of grouping and ranking of research projects submitted for a call. The projects are grouped into clusters based on the assessment obtained in the review procedure and by using the adaptive Mahalanobis clustering method as a special case of the Expectation Maximization algorithm. The cluster of projects assessed as best is specially analyzed and ranked. The paper outlines several possibilities for the use of data obtained in the review procedure, and the proposed method is illustrated with the example of internal research projects at the University of Osijek.Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).