Can confidence indicators forecast the probability of expansion in Croatia?
Abstract
The aim of this paper is to investigate how reliable are the Confidence Indicators in forecasting the probability of expansion. The nonlinear probit model is employed to map changes in predictor variables into the expansion forecasts. We consider three Croatian Business Survey indicators: Industrial Confidence The aim of this paper is to investigate how reliable are confidence indicators in forecasting the probability of expansion. We consider three Croatian Business Survey indicators: the Industrial Confidence Indicator (ICI), the Construction Confidence Indicator (BCI) and the Retail Trade Confidence Indicator (RTCI). The quarterly data, used in the research, covered the periods from 1999/Q1 to 2014/Q1. Empirical analysis consists of two parts. The non-parametric Bry-Boschan algorithm is used for distinguishing periods of expansion from the period of recession in the Croatian economy. Then, various nonlinear probit models were estimated. The models differ with respect to the regressors (confidence indicators) and the time lags. The positive signs of estimated parameters suggest that the probability of expansion increases with an increase in Confidence Indicators. Based on the obtained results, the conclusion is that ICI is the most powerful predictor of the probability of expansion in Croatia.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).