Speeding problem detection in business surveys: benefits of statistical outlier detection methods
Abstract
Speeding describes the unusually fast responses provided to survey questions. A characteristic of speeders is that answers by-pass cognitive process. Consequently, this low respondent engagement results in the poor quality and validity of data.
The issue at hand is how to detect speeders in a survey. The presumption is the use of different statistical outlier detection methods. This paper presents graphical methods for outlier detection, such as: dot-plot diagrams, scatter diagrams, histograms and box-plot diagrams. Furthermore, the quantitative methods for outlier detection in this paper are the z-score, modified z-score, Dixons’ test, Grubbs’ test, Tietjen-Moore test, Rosners’ or the generalized extreme studentized deviate (ESD) test. The performance of these outlier detection methods was observed on completion times of 217 surveys from enterprises which participated in a web survey on the use of statistical methods, and which use them in their business processes.
The analysis has shown that none of the observed outlier detection methods were able to detect speeders in an appropriate and satisfactory way as shown by the threshold. The main reasons for this can be found in slowers, the violations of assumptions on normal distribution and in masking. Hence, existing outlier detection methods should be improved and adjusted in future research in order to detect speeders. The introduction of novel speeders detection methods would be a good choice for future research.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).