Preponderantly increasing/decreasing data in regression analysis
Abstract
For the given data (wI, xI, yI ), i = 1, . . . , n, and the given model function f (x; θ), where θ is a vector of unknown parameters, the goal of regression analysis is to obtain estimator θ∗ of the unknown parameters θ such that the vector of residuals is minimized in some sense. The common approach to this problem of minimization is the least-squares method, that is minimizing the L2 norm of the vector of residuals. For nonlinear model functions, what is necessary is finding at least the sufficient conditions on the data that will guarantee the existence of the best least-squares estimator. In this paper we will describe and examine in detail the property of preponderant increase/decrease of the data, which ensures the existence of the best estimator for certain important nonlinear model functions.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).