Pregledni rad
https://doi.org/10.5599/jese.707
Influence of the exchange current density and overpotential for hydrogen evolution reaction on the shape of electrolytically produced disperse forms
Nebojša D. Nikolić
orcid.org/0000-0002-6385-5714
; ICTM-Department of Electrochemistry, University of Belgrade, Njegoševa 12, P.O.B. 473, Belgrade, Serbia
Sažetak
In this study, comprehensive survey of formation of disperse forms by the electrolysis from aqueous electrolytes and molten salt electrolysis has been presented. The shape of electrolitically formed disperse forms primarily depends on the nature of metals, determined by the exchange current density (j0) and overpotential for hydrogen evolution
reaction as a parallel reaction to metal electrolysis. The decrease of the j0 value leads to a change of shape of dendrites from the needle-like and the 2D fern-like dendrites (metals characterized by high j0 values) to the 3D pine-like dendrites (metals characterized by medium j0 values). The appearing of a strong hydrogen evolution leads to formation of cauliflower-like and spongy-like forms (metals characterized by medium and low j0 values).The other disperse forms, such as regular and irregular crystals, granules, cobweb-like, filaments, mossy and boulders, usually feature metals characterized by the high j0 values. The globules and the carrot-like forms are a characteristic of metals with the medium j0 values. The very long needles were a product of molten salt electrolysis of magnesium nitrate hexahydrate. Depending on the shape of the disperse forms, i.e. whether they are
formed without and with vigorous hydrogen evolution, formation of all disperse forms can be explained by either application of the general theory of disperse deposits formation or the concept of "effective overpotential". With the decrease of j0 value, the preferred orientation of the disperse forms changed from the strong (111) in the needle-like and the fern-like dendrites to randomly oriented crystallites in the 3D pine-like dendrites and the cauliflower-like and the spongy-like forms.
Ključne riječi
Electrolysis; metal; morphology; powder particles; SEM
Hrčak ID:
235494
URI
Datum izdavanja:
10.3.2020.
Posjeta: 1.589 *