Original scientific paper
Fractality and Lapidus zeta functions at infinity
Goran Radunović
; Department of Applied Mathematics, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
Abstract
We study fractality of unbounded sets of finite Lebesgue measure at infinity by introducing the notions of Minkowski dimension and content at infinity. We also introduce the Lapidus zeta function at infinity, study its properties and demonstrate its use in analysis of fractal properties of unbounded sets at infinity.
Keywords
distance zeta function; relative fractal drum; box dimension; complex dimensions; Minkowski content; generalized Cantor set
Hrčak ID:
170380
URI
Publication date:
11.11.2016.
Visits: 1.137 *