Preliminary communication
https://doi.org/10.17794/rgn.2018.1.3
A SOFTWARE SENSOR FOR IN-SITU MONITORING OF THE 5-DAY BIOCHEMICAL OXYGEN DEMAND
Rana Kasem
; Graduate Faculty of Environment, University of Tehran, Tehran, Iran, PhD Candidate in Environmental Engineering-Water Resources
Dimah ALabdeh
; Graduate Faculty of Environment, University of Tehran, Tehran, Iran, PhD Candidate in Environmental Engineering-Water Resources
Roohollah Noori
; Graduate Faculty of Environment, University of Tehran, Tehran, Iran, Assistant Professor of Environmental Engineering
Abdulreza Karbassi
; Graduate Faculty of Environment, University of Tehran, Tehran, Iran, Associate Professor of Environmental Engineering
Abstract
Due to the time-consuming procedure for determining the 5-day biochemical oxygen demand (BOD5), the present study developed two software sensors based on artificial intelligence techniques to estimate this indicator instantaneously. For this purpose, feed-forward and radial basis function neural networks (FFANN and RBFANN, respectively) were tuned to estimate the maximum values of BOD5 (BOD5(max)) as a function of average, maximum and minimum dissolved oxygen in the Sefidrood River. Also, Levenberg-Marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG) algorithms were used to optimize the FFANN parameters. The results demonstrated that the performance of LM algorithm in tuning the FFANN was better than others, in verification step. Besides, the performance of both FFANN and RBFANN models for prediction of the BOD5(max) was approximately the same.
Keywords
FFANN; RBFANN; Dissolved oxygen; Calibration; BOD5
Hrčak ID:
192501
URI
Publication date:
15.1.2018.
Visits: 1.994 *