Skip to the main content

Original scientific paper

https://doi.org/10.13044/j.sdewes.d6.0254

Thermogravimetric Analysis Investigation of Polyurethane Plastic Thermal Properties Under Different Atmospheric Conditions

Hrvoje Mikulčić ; Department of Energy, Power and Environmental Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb, Croatia
Qiming Jin ; Department of Thermal Engineering, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi, China
Hrvoje Stančin ; Department of Energy, Power and Environmental Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb, Croatia
Xuebin Wang ; Department of Thermal Engineering, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi, China
Shuaishuai Li ; Department of Thermal Engineering, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi, China
Houzhang Tan ; Department of Thermal Engineering, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi, China
Neven Duić ; Department of Energy, Power and Environmental Engineering, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb, Croatia


Full text: english pdf 521 Kb

page 355-367

downloads: 1.485

cite


Abstract

Recycling and energy recovery of waste plastic are major categories of modern solid waste management systems. Since the lower heating values of plastics are around 30 MJ/kg, equivalent to traditional solid fuels, such as petroleum coke, coal and charcoal, waste plastics are considered as potential fossil fuels alternatives in various industrial
sectors. Already nowadays, energy recovery of waste plastic is typically conducted by combustion in incinerators or cement kilns. However, due to various types of waste plastics, their thermochemical behaviour has been rarely investigated. Even more, the thermochemical behaviour of waste plastics under oxy-combustion conditions has even rarely been studied. In this study non-isothermal thermogravimetric analyser was used to study the thermochemical behaviour of polyurethane plastic waste under seven different atmospheric conditions. Polyurethane decomposition kinetic constants have been estimated by the simultaneous evaluations of seven weight loss curves measured for the
heating rate of 20 K/min and a final temperature of 1,073 K. The obtained results showed that the combustion of polyurethane is mainly composed of two stages, and the higher oxygen concentration slightly influenced the first stage but highly accelerates the second one, ascribing to a higher mean weight loss rate and an increasing activation energy. Replacing carbon dioxide with nitrogen slightly influences the first stage while positively influences the second stage, expressing in lower peak temperatures in differential thermogravimetry curves and higher peak values in differential scanning calorimetry curves.

Keywords

Plastic waste; Polyurethane; Thermal properties; Thermogravimetric analyser; Oxy-combustion.

Hrčak ID:

220568

URI

https://hrcak.srce.hr/220568

Publication date:

30.6.2019.

Visits: 2.393 *