Transformers Magazine, Vol. 8 No. S5, 2021.
Izvorni znanstveni članak
Fundamentals, topologies and optimization methods of saturated iron core fault current limiter
Gabriel dos Santos
Guilherme G. Sotelo
Felipe Sass
Sažetak
The energy transition is a necessity to satisfy the consumption and impact of humanity on the environment. Therefore, to fulfill this demand, renewable energies and microgrids have been developed.
Consequently, fault current levels have overcome the circuit breaker capacity in many substations over the years. Then, the development of the fault current limiters has become a potential solution to solve this problem. The literature has presented several topologies over the past decades. The saturated iron-core fault current limiter (SIC-SFCL) has exhibited promising results since this topology is tested in the distribution and transmission system substation. Thus, enforcements to increase the maturity of this equipment have been developed in different areas, for example, design, applied superconductor materials, and optimization models of the SIC-SFCL. This article has presented the fundamental concept of this equipment. Beyond that, the principal topologies have been discussed. The
article has delivered further information about the main parts that comprise this equipment. Also, the authors have introduced different characteristics which affect the recovery times of this device. The
authors have discussed the optimization methods applied to this equipment and after the conclusion is presented.
Ključne riječi
Hrčak ID:
263828
URI
Datum izdavanja:
20.8.2021.
Posjeta: 735 *