The Worst Case Finite Optimal Value in Interval Linear Programming
Abstract
We consider a linear programming problem, in which possibly all coefficients are subject to uncertainty in the form of deterministic intervals. The problem of computing the worst case optimal value has already been thoroughly investigated in the past. Notice that it might happen that the value can be infinite due to infeasibility of some instances. This is a serious drawback if we know a priori that all instances should be feasible. Therefore we focus on the feasible instances only and study the problem of computing the worst case finite optimal value. We present a characterization for the general case and investigate special cases, too. We show that the problem is easy to solve provided interval uncertainty affects the objective function only, but the problem becomes intractable in case of intervals in the righthand side of the constraints. We also propose a finite reduction based on inspecting candidate bases. We show that processing a given basis is still an NP-hard problem even with non-interval constraint matrix, however, the problem becomes tractable as long as uncertain coefficients are situated either in the objective function or in the right-hand side only.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).