Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.3336/gm.48.2.10

Optimal damping of the infinite-dimensional vibrational systems: commutative case

Ivica Nakić orcid id orcid.org/0000-0001-6549-7220 ; Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia


Puni tekst: engleski pdf 175 Kb

str. 373-390

preuzimanja: 710

citiraj


Sažetak

In this paper we treat the case of an abstract vibrational system of the form Mx″+Cx′+x=0, where the positive semi-definite selfadjoint operators M and C commute. We explicitly calculate the solution of the corresponding Lyapunov equation which enables us to obtain the set of optimal damping operators, thus extending already known results in the matrix case.

Ključne riječi

Vibrational systems; damping; Lyapunov equation

Hrčak ID:

112214

URI

https://hrcak.srce.hr/112214

Datum izdavanja:

16.12.2013.

Posjeta: 1.451 *