Skoči na glavni sadržaj

Izvorni znanstveni članak

”Almost” universality of the Lerch zeta-function

Antanas Laurinčikas ; Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania


Puni tekst: engleski pdf 174 Kb

str. 107-118

preuzimanja: 232

citiraj


Sažetak

The Lerch zeta-function $L(\lambda,\alpha,s)$ with transcendental parameter $\alpha$, or with rational parameters $\alpha$ and $\lambda$ is universal, i.e., a wide class of analytic functions is approximated by shifts $L(\lambda,\alpha,s+i\tau)$, $\tau \in \mathbb{R}$. The case of algebraic irrational $\alpha$ is an open problem. In the paper, it is proved that, for all parameters $\alpha$, $0<\alpha< 1$, and $\lambda$, $0<\lambda\leqslant 1$, including an algebraic irrational $\alpha$, there exists a closed non-empty set of analytic functions $F_{\alpha, \lambda}$ such that every function $f\in F_{\alpha, \lambda}$ can be approximated by shifts $L(\lambda,\alpha,s+i\tau)$.

Ključne riječi

Lerch zeta-function; support of probability measure; universality; weak convergence

Hrčak ID:

215154

URI

https://hrcak.srce.hr/215154

Datum izdavanja:

19.4.2019.

Posjeta: 826 *