Skoči na glavni sadržaj

Izvorni znanstveni članak

A fractional approach to nonconservative Lagrangian dynamical systems

El-Nabulsi Ahmad-Rami ; Plasma Application Laboratory, Department of Nuclear and Energy Engineering, and Faculty of Mechanical, Energy and Production Engineering, Cheju National University, Ara-dong 1, Jeju 690-756, Korea


Puni tekst: engleski pdf 119 Kb

str. 289-298

preuzimanja: 111

citiraj


Sažetak

In this work, fractional integral calculus is applied in order to derive Lagrangian mechanics of nonconservative systems. In the proposed method, fractional time integral introduces only one parameter, a, while in other models an arbitrary number of fractional parameters (orders of derivatives) appears. Some results on Hamiltonian part of mechanics, namely Hamilton equations, are obtained and discussed in detail.

Ključne riječi

Riemann-Liouville fractional integral; variational calculus; Euler-Lagrange equation; weak dissipation

Hrčak ID:

302010

URI

https://hrcak.srce.hr/302010

Datum izdavanja:

2.10.2005.

Podaci na drugim jezicima: hrvatski

Posjeta: 652 *