Skoči na glavni sadržaj

Izvorni znanstveni članak

Development of Laminated Flooring Using Wood and Waste Tire Rubber Composites: A Study on Physical-Mechanical Properties

Sima Sepahvand ; Faculty of New Technologies Engineering, Tehran, Iran
Mohammad Rezvani ; Shahid Rajaee Teacher Training University, Tehran, Iran
Mohammad Ghofrania ; Department of Wood Science and Technology, Tehran, Iran
Fathi Leila ; Shahrekord Universit, Shahrekord, Iran
Ghanbar Ebrahimi ; Department of Wood and Paper Science and Technology, Tehran, Iran

Puni tekst: engleski pdf 1.196 Kb

str. 107-119

preuzimanja: 80



This study aimed to develop laminate flooring composite using a combination of wood and waste tire rubber (WTR). Plywood panels were produced by using beech (Fagus orientalis), alder (Alnus glutinosa), and poplar (Populus) veneers in a 7-ply configuration. To enhance the physical-mechanical properties of the panels, three loadings of nano-SiO2 (0, 2, and 4 wt%) along with 2 wt% of hexamethyldisilazane (HMDS) were added. Commercial urea-formaldehyde (UF) resin and methylene diphenyl diisocyanate (MDI) were used to bind the wood layers and rubber layers together. The mechanical properties, including modulus of rupture (MOR), modulus of elasticity (MOE), impact strength (IS), hardness strength (HS), and physical properties, such as density (D), water uptake (WU), and thickness swelling (TS), were evaluated. The results showed that increasing the WTR content led to improvements in the physical properties (D, WU, and TS), while negatively affecting the mechanical properties (MOR, MOE, IS, and HS) of the resulting panels. However, the addition of nano-SiO2 improved both the physical and mechanical properties (MOR, MOE, and HS) of the panels. Furthermore, it was observed that the mechanical properties were enhanced with increasing the number of beech layers, although the WU of panels decreased compared to panels made with alder and poplar. Overall, the improvement in the physical properties of the panels followed the order of the arrangement of rubber layers > nano-SiO2 content > veneer layers.

Ključne riječi

silica nanoparticles; rubber waste; plywood; physical-mechanical properties; flooring

Hrčak ID:



Datum izdavanja:


Podaci na drugim jezicima: hrvatski

Posjeta: 217 *