Skip to the main content

Original scientific paper

https://doi.org/10.31534/engmod.2020.3-4.ri.05v

Mathematical modelling for multiproduct EPQ problem featuring delayed differentiation, expedited rate, and scrap

Singa Wang Chiu ; Department of Business Administration, Chaoyang University of Technology, Taichung 413, TAIWAN
Jia-Ning Lin ; Department of Industrial Engineering & Management, Chaoyang University of Technology, TAIWAN
Yunsen Wang ; School of Accounting, Southwestern University of Finance and Economics, Chengdu, CHINA. 611130
Hong-Dar Lin ; Department of Industrial Engineering & Management, Chaoyang University of Technology, TAIWAN


Full text: english pdf 2.369 Kb

page 75-95

downloads: 414

cite


Abstract

The client requirements of present-day markets emphasize product quality, variety, and rapid response. To gain competitive advantages in marketplaces and meet customer needs, manufacturers today seek the most economical and fastest fabrication schemes and strategies to produce their various goods, especially when commonality exists within these multiple end products. Inspired by the above viewpoints, this study uses a mathematical modelling approach for solving a multiproduct economic production quantity (EPQ) problem featuring scrap, delayed differentiation, and expedited rate on the fabrication of the common part. We build a two-stage multiproduct fabrication scheme. Stage one uses an accelerated rate to produce all necessary common parts for multi-item to shorten its uptime, while stage two fabricates finished products sequentially using a rotation cycle rule. Inevitable random scraps produced in both stages are identified and removed to achieve the anticipated quality. We determined the optimal cost-minimization operating cycle length and used a numerical example to show our model’s capability and to explore collective and individual impacts of scrap, expedited-rate, and postponement strategies on various performances of the studied problem (such as uptime of common part, utilization, rotation cycle time, total system cost, and individual cost contributor, etc.) Our model can offer an optimization solution and in-depth managerial insights for fabrication and operations planning in a wide variety of present-day industries, such as automotive, household goods, clothing, etc.

Keywords

multiproduct manufacturing problem; rotation cycle; delayed differentiation; expedited rate; economic production quantity; random scrap

Hrčak ID:

247776

URI

https://hrcak.srce.hr/247776

Publication date:

14.12.2020.

Visits: 1.258 *