Skip to the main content

Professional paper

Preliminarne spoznaje o geoenergetskom potencijalu podzemlja istočnog dijela Dravske depresije

Marko Cvetković
Iva Kolenković Močilac
Marija Pejić


Full text: croatian pdf 1.211 Kb

page 45-54

downloads: 0

cite

Download JATS file


Abstract

Istočni dio Dravske depresije okvirno obuhvaća površinu od 5200 km2 čija debljina neogensko-kvartarne ispune lokalno može doseći i više od 6 km. Ležišta nafte i plina unutar neogensko-kvartarnih naslaga potvrđena su tijekom istraživanja koja su se provodila više od 50 godina. Unatoč ovako dugom razdoblju istraživanja i proizvodnje nafte i plina, regionalna bazenska analiza pokazuje da još uvijek postoji potencijal u pronalaženju novih ležišta nafte i plina. Dodatna mogućnost iskorištavanja dubokog podzemlja nastaje kao posljedica trenda prelaska na obnovljive izvore energije i trenda dekarbonizacije gdje ovaj dio Hrvatske ima potencijal u iskorištavanju geotermalnih resursa, geološkom skladištenju ugljičnog dioksida i u podzemnom skladištenju energije. Povišeni geotermalni gradijent, koji lokalno može biti i viši od 5 °C/100 m, omogućuje definiranje objekata prikladnih za iskorištavanje geotermalne energije u različite namjene i to iz neogensko-kvartarnih stijena te iz stijena podloge neogena sa značajnom sekundarnom poroznošću. Potencijal za uskladištenje ugljikovog dioksida i za podzemno skladištenje energije povećavat će se s vremenom, budući da je većina naftnih i plinskih polja na ovom području pri kraju proizvodnje.
Zahvale: Zahvaljujemo Hrvatskoj agenciji za ugljikovodike na ustupljenim seizmičkim i bušotinskim podatcima, te tvrtki Schlumberger na donaciji licenci za softver bez kojeg se ovaj posao ne bi mogao izvoditi. Ovaj rad sufinancirala je Hrvatska zaklada za znanost projektom „GEOloška karakterizacija podzemlja istočnog dijela Dravske depresije s ciljem procjene Energetskih Potencijala“ (UIP-2019-04-3846).

Keywords

nafta; plin; geotermalna energija; skladištenje ugljikovog dioksida; podzemno skladištenje energije; Dravska depresija

Hrčak ID:

319231

URI

https://hrcak.srce.hr/319231

Publication date:

11.7.2024.

Article data in other languages: english

Visits: 0 *




Uvod

Završetkom uspješnog procesa vrednovanja projektnog prijedloga na natječaju Uspostavni istraživački projekti 2019-04 Hrvatske zaklade za znanost, odobreno je financiranje projekta pod nazivom „GEOloška karakterizacija podzemlja istočnog dijela Dravske depresije s ciljem procjene Energetskih Potencijala“ (UIP-2019-04-3846). Koncept projekta je zasnovan na evaluaciji geoenergetskog potencijala u vidu procjene mogućnosti pronalaska konvencionalnih ležišta ugljikovodika, utvrđivanja povoljnih lokacija za skladištenje ugljikovog dioksida te procjene geotermalnog potencijala. Samo područje istraživanja obuhvaća istočni dio Dravske depresije te pokriva približno 5200 km2 (Slika 1). Geoenergetska istraživanja podzemlja redovito provode kompanije koje se bave eksploatacijom ugljikovodika, a ovaj projekt je jedan od rijetkih znanstvenih projekata s takvim ciljem istraživanja, poglavito u vezi istraživanja vezana za konvencionalna ležišta ugljikovodika. Nije nepoznato da se takva istraživanja provode već nekoliko desetljeća od strane INA d.d. konvencionalnim pristupima izvođenjem i interpretacijom geofizičkih istraživanja te izradbom bušotina. Ovaj projekt za svoj cilj ima korištenje manje konvencionalnih metoda, poput površinskih istraživanja i analiza plinova u zraku tla te prirodne radioaktivnosti stijena na izdancima u svrhu poboljšanja dubinsko-geoloških modela.

Metode

Metode korištene u izradi rada.

Rezultati

Tekst rezultata

Rasprava

Tekst

Appendix/Dodatak -->

References

1. 

Abdel Hafeez T., ; Abdelwahhab M., ; Elmahdy M. , authors. 2019. Geothermal application of spectral gamma ray logging in the South Kansas Subsurface, USA. Applied Radiation and Isotopes. https://doi.org/10.1016/j.apradiso.2019.108904(154):

2. 

Adabanija M.A., ; Anie O.N., ; Oladunjoye M.A. , authors. 2020. Radioactivity and gamma ray spectrometry of basement rocks in Okene area, southwestern Nigeria. NRIAG. Journal of Astronomy and Geophysics. https://doi.org/10.1080/20909977.2020.17116959(1):71–84

3. 

Barić G. , author. 1996. Organic Geochemistry in the Rationalization of Oil and Gas Exploration and Production. Geologia Croatica. 49(2):191–195

4. 

Barić G., ; Mesić I., ; Jungwirth M. , authors. 1998. Petroleum geochemistry of the deep part of the Drava Depression, Croatia. Organic Geochemistry. https://doi.org/10.1016/S0146-6380(98)00096-529(1-3):571–582

5. 

Cinelli G., ; Tollefsen T., ; Bossew P., ; Gruber V., ; Bogucarskis K., ; De Felice L., ; De Cort M. , authors. 2019. Digital version of the European Atlas of natural radiation. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2018.02.008(196):240–252

6. 

Cinelli G., ; Tositti L., ; Capaccioni B., ; Brattich E., ; Mostacci D. , authors. 2015. Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-014-9649-937(2):305–319

7. 

Cvetković M., ; Emanović I., ; Stopar A., ; Slavinić P. , authors. 2018. Petroleum system modeling and assessment of the remaining hydrocarbon potential in the eastern part of Drava Depression. Interpretation. https://doi.org/10.1190/INT-2017-0078.1():

8. 

Cvetković M., ; Kapuralić J., ; Pejić M., ; Kolenković Močilac I., ; Rukavina D., ; Smirčić D., ; Kamenski A., ; Matoš B., ; Špelić M. , authors. 2021. Soil Gas Measurements of Radon, CO2 and Hydrocarbon Concentrations as Indicators of Subsurface Hydrocarbon Accumulation and Hydrocarbon Seepage. Sustainability. https://doi.org/10.3390/su13073840():

9. 

Cvetković M., ; Matoš B., ; Rukavina D., ; Kapuralić J., ; Kolenković Močilac I., ; Saftić B., ; Baketarić M., ; Baketarić T., ; Vuić I., ; Stopar A., ; Jurić A., ; Paškov T. , authors. 2019. Geoenergy potential of the Croatian part of Pannonian Basin: insights from the reconstruction of the pre-Neogene basement unconformity. Journal of Maps. https://doi.org/10.1080/17445647.2019.1645052():

10. 

, author. 2009. Assessing European Capacity for Geological Storage of Carbon Dioxide, Technical reports, FP-518318.: EU GeoCapacity. Storage Capacities. WP2.3 D17. EU Geocapacity. ():

11. 

Füst A., ; Geiger J. , authors. 2010. Monitoring planning and evaluation using geostatistics, I.Geostatistical support for verification sampling based on professional opinion. Földtani Közlöny. imf.org():

12. 

Hendel J. , author. 2017. Occurrence of microbial and thermogenic gases in post-mining areas. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. https://doi.org/10.5593/sgem2017/11/S01.050():

13. 

Hernández Ochoa A.F., ; Aragón Aguilar A., ; Franco Nava J.M. , authors. 2021. An up-to-date perspective of geothermal power technology. Sustainable Fuel Technologies Handbook. https://doi.org/10.1016/B978-0-12-822989-7.00008-1():

14. 

Jelić K., ; Kevrić L., ; Krasić O. , authors. 1995. Temperatura i toplinski tok u tlu Hrvatske [Temperature and heat flow in the soil of Croatia]. Proceedings of the First Croatian Geological Congress. ():

15. 

Kolenković Močilac I., ; Cvetković M., ; Pejić M., ; Saftić B. , authors. 2024. Selection of a prospect for CO2 storage - possibilites and pitfalls in the case of screening in the Eastern part of Drava Basin, Croatia. CO2 GeoNet 17th Open Forum, 1–1. ():

16. 

Lenkey L., ; Dövényi P., ; Horváth F., ; Cloetingh S. A. P. L. , authors. 2002. Geothermics of the Pannonian basin and its bearing on the neotectonics. In EGU Stephan Mueller Special Publication Series. 3():

17. 

Lučić D., ; Saftić B., ; Krizmanić K., ; Prelogović E., ; Britvić V., ; Mesić I., ; Tadej J. , authors. 2001. The Neogene evolution and hydrocarbon potential of the Pannonian Basin in Croatia. Marine and Petroleum Geology. https://doi.org/10.1016/S0264-8172(00)00038-6():133–147

18. 

Macenić M., ; Kurevija T., ; Medved I. , authors. 2020. Novel geothermal gradient map of the Croatian part of the Pannonian Basin System based on data interpretation from 154 deep exploration wells. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/J.RSER.2020.110069():

19. 

Martínez R., ; Suárez I., ; Zapatero M.A., ; Saftic B., ; Kolenkovic I., ; Car M., ; Persoglia S., ; Donda F. , authors. 2009. The EU Geocapacity Project—Saline aquifers storage capacity in Group South countries. Energy Procedia. https://doi.org/10.1016/j.egypro.2009.02.043():

20. 

Muffler P., ; Cataldi R. , authors. 1978. Methods for regional assessment of geothermal resources. Geothermics. https://doi.org/10.1016/0375-6505(78)90002-07(2-4):53–89

21. 

Partington J.R., ; Cataldi R. , authors. 1957. Discovery of Radon. Nature. https://doi.org/10.1038/179912a0179(4566):912

22. 

Pavelić D., ; Kovačić M. , authors. 2018. Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia). A review. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2018.01.026(91):455–469

23. 

Peters K.E., ; Nelson P.H. , authors. 2012. Criteria to Determine Borehole Formation Temperatures for Calibration of Basin and Petroleum System Models. In Analyzing the Thermal History of Sedimentary Basins: Methods and Case Studies (pp. 5–15). SEPM (Society for Sedimentary Geology). https://doi.org/10.2110/sepmsp.103.005():

24. 

Sanjurjo-Sánchez J., ; Barrientos Rodríguez V., ; Arce Chamorro C., ; Alves C. , authors. 2022. Estimating the Radioactive Heat Production of a Granitic Rock in the University of A Coruña (Galicia, Northwest Spain) by Gamma-ray Spectrometry. Applied Sciences. https://doi.org/10.3390/app12231196512(23):

25. 

Siler D.L., ; Faulds J.E., ; Hinz N.H., ; Dering G.M., ; Edwards J.H., ; Mayhew B. , authors. 2019. Three-dimensional geologic mapping to assess geothermal potential: examples from Nevada and Oregon. Geothermal Energy. https://doi.org/10.1186/s40517-018-0117-07(1):

26. 

Špelić M., ; Kovács A., ; Saftić B., ; Sztanó O. , authors. 2023. Competition of deltaic feeder systems reflected by slope progradation: a high-resolution example from the Late Miocene-Pliocene, Drava Basin, Croatia. International Journal of Earth Sciences. https://doi.org/10.1007/s00531-023-02290-w112(3):1023–1041

27. 

Tissot B.P., ; Welte D.H. , authors. 1984. Petroleum formation and occurrence. https://books.google.com/books/about/Petroleum_Formation_and_Occurrence.html?id=wMsZAQAAIAAJ():

28. 

Tokonami S. , author. 2020. Characteristics of Thoron (220Rn) and Its Progeny in the Indoor Environment. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph1723876917(23):

29. 

Velić J. , author. 2007. Geologija nafte [Petroleum Geology]. University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering. ():


This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.