Skoči na glavni sadržaj

Izvorni znanstveni članak

A Comparison between Neural Networks and Traditional Forecasting Methods: A Case Study

C. A. Mitrea ; Nanyang Technological University, Singapore
C. K. M. Lee ; Nanyang Technological University, Singapore
Z. Wu ; Nanyang Technological University, Singapore


Puni tekst: engleski pdf 809 Kb

str. 19-24

preuzimanja: 4.120

citiraj


Sažetak

Forecasting accuracy drives the performance of inventory management. This study is to investigate and compare different forecasting methods like Moving Average (MA) and Autoregressive Integrated Moving Average (ARIMA) with Neural Networks (NN) models as Feed-forward NN and Nonlinear Autoregressive network with eXogenous inputs (NARX). Data used to forecast is acquired from inventory database of Panasonic Refrigeration Devices Company located in Singapore. Results have shown that forecasting with NN offers better performance in comparison with traditional methods.

Ključne riječi

ARIMA; Forecasting; Inventory; Neural Networks; Safety Stock

Hrčak ID:

66717

URI

https://hrcak.srce.hr/66717

Datum izdavanja:

15.9.2009.

Posjeta: 5.001 *

accessibility

closePristupačnostrefresh

Ako želite spremiti trajne postavke, kliknite Spremi, ako ne - vaše će se postavke poništiti kad zatvorite preglednik.