Skip to the main content

Original scientific paper

Diophantine approximation for the cubic root of polynomials of $\mathbb{F}_{2}[X]$

Khalil Ayadi ; Département de mathématiques, Faculté des sciences, Université de Sfax, Sfax, Tunisie
Mohamed Hbaib ; Département de mathématiques, Faculté des sciences, Université de Sfax, Sfax, Tunisie
Faiza Mahjoub ; Département de mathématiques, Faculté des sciences, Université de Sfax, Sfax, Tunisie


Full text: english pdf 280 Kb

page 613-627

downloads: 1.004

cite


Abstract

In this paper, with different approaches we study rational
approximation for the algebraic {formal power series} in
$\mathbb{F}_{2}((X^{-1}))$ solving the irreducible equation
\[\alpha^{3}=R,\]
where $R$ is a polynomial of $\mathbb{F}_{2}[X]$.
Moreover, for some polynomials $R$, we give explicitly the
continued fraction expansion of the root of this equation.

Keywords

finite field; formal power series; continued fraction expansion

Hrčak ID:

93295

URI

https://hrcak.srce.hr/93295

Publication date:

5.12.2012.

Visits: 1.931 *