hrcak mascot   Srce   HID

Izvorni znanstveni članak

Diophantine approximation for the cubic root of polynomials of $\mathbb{F}_{2}[X]$

Khalil Ayadi ; Département de mathématiques, Faculté des sciences, Université de Sfax, Sfax, Tunisie
Mohamed Hbaib ; Département de mathématiques, Faculté des sciences, Université de Sfax, Sfax, Tunisie
Faiza Mahjoub ; Département de mathématiques, Faculté des sciences, Université de Sfax, Sfax, Tunisie

Puni tekst: engleski, pdf (280 KB) str. 613-627 preuzimanja: 586* citiraj
APA 6th Edition
Ayadi, K., Hbaib, M. i Mahjoub, F. (2012). Diophantine approximation for the cubic root of polynomials of $\mathbb{F}_{2}[X]$. Mathematical Communications, 17 (2), 613-627. Preuzeto s https://hrcak.srce.hr/93295
MLA 8th Edition
Ayadi, Khalil, et al. "Diophantine approximation for the cubic root of polynomials of $\mathbb{F}_{2}[X]$." Mathematical Communications, vol. 17, br. 2, 2012, str. 613-627. https://hrcak.srce.hr/93295. Citirano 26.09.2021.
Chicago 17th Edition
Ayadi, Khalil, Mohamed Hbaib i Faiza Mahjoub. "Diophantine approximation for the cubic root of polynomials of $\mathbb{F}_{2}[X]$." Mathematical Communications 17, br. 2 (2012): 613-627. https://hrcak.srce.hr/93295
Harvard
Ayadi, K., Hbaib, M., i Mahjoub, F. (2012). 'Diophantine approximation for the cubic root of polynomials of $\mathbb{F}_{2}[X]$', Mathematical Communications, 17(2), str. 613-627. Preuzeto s: https://hrcak.srce.hr/93295 (Datum pristupa: 26.09.2021.)
Vancouver
Ayadi K, Hbaib M, Mahjoub F. Diophantine approximation for the cubic root of polynomials of $\mathbb{F}_{2}[X]$. Mathematical Communications [Internet]. 2012 [pristupljeno 26.09.2021.];17(2):613-627. Dostupno na: https://hrcak.srce.hr/93295
IEEE
K. Ayadi, M. Hbaib i F. Mahjoub, "Diophantine approximation for the cubic root of polynomials of $\mathbb{F}_{2}[X]$", Mathematical Communications, vol.17, br. 2, str. 613-627, 2012. [Online]. Dostupno na: https://hrcak.srce.hr/93295. [Citirano: 26.09.2021.]

Sažetak
In this paper, with different approaches we study rational
approximation for the algebraic {formal power series} in
$\mathbb{F}_{2}((X^{-1}))$ solving the irreducible equation
\[\alpha^{3}=R,\]
where $R$ is a polynomial of $\mathbb{F}_{2}[X]$.
Moreover, for some polynomials $R$, we give explicitly the
continued fraction expansion of the root of this equation.

Ključne riječi
finite field; formal power series; continued fraction expansion

Hrčak ID: 93295

URI
https://hrcak.srce.hr/93295

Posjeta: 814 *