A novel electrochemical sensor based on metal nanoparticles and molecularly imprinted polymer nanocomposite with biological applications
DOI:
https://doi.org/10.17794/rgn.2022.1.7Keywords:
electrochemical sensor, metal nanoparticles, molecularly imprinted polymer, p-aminothiophenolAbstract
Metal nanoparticles trapped in a biopolymer composite due to electrical conductivity properties improve electrochemical sensors with biomedical and environmental applications. The study aims are to design a novel molecularly imprinted polymer (MIP) composite based on magnetic graphene oxide (Fe3O4@GO) modified silica (SiO2) and gold nanoparticles (AuNPs) to electrochemical detect serotonin (5-hydroxytryptamine, 5-HT). A suitable amount of 5-HT is effective on motivational functions and the environment because it is a serotonergic neurotransmitter. But the desired nanocomposite may have a relatively low recognition, therefore must be in choosing the type of functional monomer be careful. In this regard, the design of the electrochemical sensor began by synthesis of Fe3O4@GO-SiO2@AuNPs nanocomposite. Then, MIP electropolymerization was carried out by using p-aminothiophenol (PATP)-functionalized Fe3O4@GO-SiO2@AuNPs nanocomposite in the presence of 5HT as a template molecule. Electrochemical polymerization of MIP nanocomposite was developed using cyclic voltammetry (CV) and the electrochemical properties of 5-HT were studied use differential pulse voltammetry (DPV) technology in the 5HT solution. After optimization of preparation and measurement conditions on the designed sensor, the 5HT concentration range is 0.1 μM to 10 μM linearly, and the detection limit was 1 × 10-5 μM (S / N = 3). The wide concentration range and low detection limit were presented metal nanoparticles functionalized MIP with appropriate functional monomer have a great effect on the performance of the sensor. Furthermore, PATP-functionalized metal nanoparticles increase the conductivity and recognition of the prepared MIP electrochemical sensor to the quantification of 5-HT in biological samples with high selectivity and recovery.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 authors and journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons-BY
Authors who publish with this journal agree to the following terms:
In agreeing this form, you certify that:
- You read the ethical codex of the RGN zbornik available at journal web.
- You submitted work is your original work, and has not previously been published and does not include any form of plagiarism.
- You own copyright in the submitted work, and are therefore permitted to assign the licence to publish to RGN zbornik.
- Your submitted work contains no violation of any existing copyright or other third party right or any material of an obscene, libellous or otherwise unlawful nature.
- You have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the work of which you are not the copyright owner.
- You have taken due care to ensure the accuracy of the work, and that, to the best of your knowledge, there are no false statements made within it.
- All co-authors of this submitted work are aware of, and in agreement with, the terms of this licence and that the submitted manuscript has been approved by these authors.
Publication licence
You retain copyright in your submitted work, according to journal license policy (CC-BY). By signing this form you agree that RGN zbornik may publish it under the publication licence. In summary the licence allows the following:
Anyone is free:
- To copy, distribute, display, and perform the work.
- To make derivative works.
Under the following conditions:
- The original author must always be given credit.
- The work may not be used for commercial purposes.
- If the work is altered, transformed, or built upon, the resulting work may only be distributed under a licence identical to this one.
Exceptions to the licence
In addition to publishing the work printed under the above licence, RGN zbornik will also enable the work to be visible online.
The journal editorial can change the licence rules anytime but it cannot retroactively restrict author(s) rights.