Assessment of excavation intersections’ stability in jointed rock masses using the discontinuum approach
DOI:
https://doi.org/10.17794/rgn.2022.2.12Keywords:
jointed rock mass, apatite-nepheline deposit, excavations intersection, rock failure, discrete-element modellingAbstract
During ore deposit development, vast networks of excavations are designed, and the volume of their intersections reaches 10%. At excavation intersections, the prediction of stress-strain state changes is complicated due to spatial geometry, the cross-coupling effect, construction sequence, etc. Mechanical properties of rocks, joint set parameters and the initial stress field also have a significant impact on stress redistribution. According to studies, up to 40% of the total number of failures in excavations occur during their intersections’ construction or reinforcing. Loads on the intersection support in accordance with existing methods are determined as for single excavations with an equivalent span and defined as the width of the larger excavation. The trend towards the intensification of mining, an increase in depth and the complexity of mining and geological conditions also complicate stress state assessment. Existing approaches need to be revised and updated for a more accurate prediction of the stress-strain state at intersections, and should consider spatial geometry, joint sets and initial stress field parameters. In this research, discrete element numerical modelling in 3DEC is done and the results are compared with existing empirical methods. Numerical models are created in a spatial setting and contain explicit representations of joints in the rock mass. Models are verified based on in-situ data, and the obtained results show a difference of up to 2 times in comparison with empirical results. This indicates that the reliability of the existing empirical methods is low, which may lead to stability loss on an intersection. Therefore, empirical methods should be updated. This can be done on the basis of numerical modelling, which shows sufficient convergence with in-situ data.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 authors and journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons-BY
Authors who publish with this journal agree to the following terms:
In agreeing this form, you certify that:
- You read the ethical codex of the RGN zbornik available at journal web.
- You submitted work is your original work, and has not previously been published and does not include any form of plagiarism.
- You own copyright in the submitted work, and are therefore permitted to assign the licence to publish to RGN zbornik.
- Your submitted work contains no violation of any existing copyright or other third party right or any material of an obscene, libellous or otherwise unlawful nature.
- You have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the work of which you are not the copyright owner.
- You have taken due care to ensure the accuracy of the work, and that, to the best of your knowledge, there are no false statements made within it.
- All co-authors of this submitted work are aware of, and in agreement with, the terms of this licence and that the submitted manuscript has been approved by these authors.
Publication licence
You retain copyright in your submitted work, according to journal license policy (CC-BY). By signing this form you agree that RGN zbornik may publish it under the publication licence. In summary the licence allows the following:
Anyone is free:
- To copy, distribute, display, and perform the work.
- To make derivative works.
Under the following conditions:
- The original author must always be given credit.
- The work may not be used for commercial purposes.
- If the work is altered, transformed, or built upon, the resulting work may only be distributed under a licence identical to this one.
Exceptions to the licence
In addition to publishing the work printed under the above licence, RGN zbornik will also enable the work to be visible online.
The journal editorial can change the licence rules anytime but it cannot retroactively restrict author(s) rights.