The effect of geological properties of dimension stones on the prediction of Specific Energy (SE) during diamond wire cutting operations
DOI:
https://doi.org/10.17794/rgn.2020.3.2Keywords:
Specific Energy (SE), Diamond wire cutting, dimension stones, rock properties and operating parametersAbstract
Given the increasing demand for dimension stones, mining operations in quarries have always been an important branch of mining engineering. Among different techniques, diamond wire cutting is one of the most common methods of dimension stone mining. A reliable assessment and accurate prediction of diamond wire cutting performance are essential for feasibility analysis and operational planning in this area. This performance depends on factors such as physical, mechanical, and textural properties of the rock and the characteristics of cutting operations which can be evaluated by criteria such as specific energy, production rate, efficiency, and diamond bead wear rate. This study aims to develop a method for predicting the specific energy of diamond wire cutting in dimension stones based on rock properties. For this purpose, the specific energy of diamond wire cutting in 11 different igneous rock samples was measured. Given the high strength and abrasivity of igneous rocks, cutting operations in these rocks generally requires a great amount of energy. In a series of tests performed on the samples, rock properties such as uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), Young’s modulus, density, textural properties, abrasivity and operating factors such as pullback amperage were measured. The measured parameters were divided into four groups of physical, mechanical, textural, and operating parameters. After determining the specific cutting energy of each sample, the relationship of the energy with each individual property was investigated. This investigation showed that density, abrasivity, and p-wave velocity respectively had the highest correlation with specific energy. Using the correlation results, four input parameters (one from each of the four considered parameter groups) were selected for inclusion in the prediction model. These parameters were density, abrasivity, wave velocity, and amperage. Multivariate linear regression was then used to analyse the effect of rock properties and operating parameters on specific energy. The developed regression model showed that once the rock properties are known, the specific energy can be predicted with an accuracy of 85.8%. The proposed model can be used to estimate the specific energy of diamond wire cutting operations in dimension stone quarries in advance, and predict the amount of energy consumption, the required energy source, and the optimal cutting machine accordingly.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 authors and journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons-BY
Authors who publish with this journal agree to the following terms:
In agreeing this form, you certify that:
- You read the ethical codex of the RGN zbornik available at journal web.
- You submitted work is your original work, and has not previously been published and does not include any form of plagiarism.
- You own copyright in the submitted work, and are therefore permitted to assign the licence to publish to RGN zbornik.
- Your submitted work contains no violation of any existing copyright or other third party right or any material of an obscene, libellous or otherwise unlawful nature.
- You have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the work of which you are not the copyright owner.
- You have taken due care to ensure the accuracy of the work, and that, to the best of your knowledge, there are no false statements made within it.
- All co-authors of this submitted work are aware of, and in agreement with, the terms of this licence and that the submitted manuscript has been approved by these authors.
Publication licence
You retain copyright in your submitted work, according to journal license policy (CC-BY). By signing this form you agree that RGN zbornik may publish it under the publication licence. In summary the licence allows the following:
Anyone is free:
- To copy, distribute, display, and perform the work.
- To make derivative works.
Under the following conditions:
- The original author must always be given credit.
- The work may not be used for commercial purposes.
- If the work is altered, transformed, or built upon, the resulting work may only be distributed under a licence identical to this one.
Exceptions to the licence
In addition to publishing the work printed under the above licence, RGN zbornik will also enable the work to be visible online.
The journal editorial can change the licence rules anytime but it cannot retroactively restrict author(s) rights.