Izvorni znanstveni članak
MODELS FOR CONTIONUOS ESTIMATION OF BENZENE IN REFORMATE
Željka Ujević Andrijić
orcid.org/0000-0003-2290-9664
; Fakultet kemijskog inženjerstva i tehnologije, Sveučilište u Zagrebu, Zagreb, Hrvatska
Romano Karlović
; Fakultet kemijskog inženjerstva i tehnologije, Sveučilište u Zagrebu, Zagreb, Hrvatska
Nenad Bolf
; Fakultet kemijskog inženjerstva i tehnologije, Sveučilište u Zagrebu, Zagreb, Hrvatska
Ivana Šarlija
; INA Industrija nafte d.d., Sektor Rafinerija nafte Rijeka
Sažetak
Due to environmental regulations and production requirement the benzene content in fuels need to be limited. Therefore, it is necessary to continuously monitor the benzene content in light and heavy reformate. As the process analyzers that measure the benzene content in reformate, are often out of service, models of soft sensor are developed for the continuous estimation of benzene content. Soft sensors are developed using linear identification methods and global optimization methods. The development of Finite Impulse Response (FIR)) model and Output Error (OE) model are presented. To overcome the problem of selecting the best model order for multiple input models, by trial and error, genetic algorithms (GA) was used which makes the development of the soft sensors more systematic. Developed models show a satisfactory match with analyzer data on a validation data set. Models are implemented on the fractionation plant for the estimation of benzene content in light reformate.
Ključne riječi
soft sensor; linear dynamic model; identification
Hrčak ID:
106829
URI
Datum izdavanja:
28.6.2013.
Posjeta: 2.290 *