Skoči na glavni sadržaj

Izvorni znanstveni članak

Flow Stress Prediction of Hot Compressed Tool Steel by CAE NN and Hyperbolic-Sine Equation

I. Peruš
G. Kugler
M. Terčelj
P. Fajfar


Puni tekst: engleski pdf 657 Kb

str. 261-268

preuzimanja: 441

citiraj


Sažetak

Hot compression experiments are carried out on steel workpieces by means of Gleeble 1500 thermo mechanical simulator in wide range of temperatures 800 °C - 1200 °C with strain rates 0,1 s-1, 1,0 s-1 and 8,0 s-1and true strains of 0,0 to 0,5. Hot flow curves were estimated by means of the CAE neural networks. The methods of constant smoothness parameter and non-constant (ellipsoidal) smoothness parameter were applied. The use of the latter proved more exact (up to 3,4 %) and simpler if we compare it with the existing data for the flow curve prediction of tool steel by BP NN (up to 7 %), as the proposed method yields better results. The activation energy and other parameters in hyperbolic-sine equation were calculated according to the method proposed by McQueen et al. and according to the method recently proposed by Kugler et al. The latter yields better results at predicting the maximum values of hot flow curves.

Ključne riječi

tool steel, hot compression, flow stress, artificial neural network, activation energy

Hrčak ID:

127821

URI

https://hrcak.srce.hr/127821

Podaci na drugim jezicima: hrvatski

Posjeta: 863 *