Izvorni znanstveni članak
A Microfluidic Platform Containing Sidewall Microgrooves for Cell Positioning and Trapping
Masoud Khabiry
; Piezoactive Systems Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, USA; Bioengineering Department, Northeastern University, Boston, USA
Nader Jalili
; Piezoactive Systems Laboratory, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, USA
Sažetak
Microfluidic channels enable the control of cell positioning and the capturing of cells for high-throughput screening and other cellular applications. In this paper, a simple microfluidic platform is proposed for capturing small volumes of cells using sidewall microgrooves. The cell docking patterns in the channels containing sidewall microgroove are also studied. Both numerical and experimental investigations are performed within channels containing sidewall microgrooves of three different widths (i.e., 50, 100 and 200 µm). It is observed that channels containing sidewall microgrooves play an important role in regulating cell positioning and patterning. The obtained results revealed that 10 to 14 cells were positioned inside the sidewall channels of 200 µm width, two to five cells were positioned within the channels of 100 µm width, and one to two individual cells were docked within the sidewall channel of 50 µm width. Particle modelling shows the prediction of cell positioning within sidewall microgrooves. The positions of cells docked within microgroove-containing channels were also quantified. Furthermore, the shear stress variation and cell positioning in the sidewall microgrooves were correlated. Therefore, these sidewall microgroove-containing channels could be potentially useful for regulating cell positioning and patterning on two-dimensional surfaces, three-dimensional microenvironments and high-throughput screening. Cell patterning and positioning are of great importance in many biological applications, such as drug screening and cell-based biosensing.
Ključne riječi
Microfluidic; Cell Positioning and Trapping; Microcantilever-based Biosensors
Hrčak ID:
157653
URI
Datum izdavanja:
1.1.2015.
Posjeta: 1.014 *