Skoči na glavni sadržaj

Izvorni znanstveni članak

A note on the products $((m+1)^{2}+1)((m+2)^{2}+1)\hdots(n^{2}+1)$ and $((m+1)^{3}+1)((m+2)^{3}+1)\hdots(n^{3}+1)$

Erhan Gürel ; Middle East Technical University, Northern Cyprus Campus,Güzelyurt, Turkey


Puni tekst: engleski pdf 110 Kb

str. 109-114

preuzimanja: 429

citiraj


Sažetak

We prove that for any positive integer $m$ there exists a positive real number $N_m$ such that whenever the integer $n\geq N_m$ neither the product $P^{n}_{m}=((m+1)^{2}+1)((m+2)^{2}+1)\hdots(n^{2}+1)$ nor the product $Q^{n}_{m}=((m+1)^{3}+1)((m+2)^{3}+1)\hdots(n^{3}+1)$ is a square.

Ključne riječi

Polynomial products; diophantine equations

Hrčak ID:

157711

URI

https://hrcak.srce.hr/157711

Datum izdavanja:

16.5.2016.

Posjeta: 1.135 *