Original scientific paper
https://doi.org/10.13044/j.sdewes.d5.0138
Modeling of a Cogeneration System with a Micro Gas Turbine Operating at Partial Load Conditions
José C. Dutra
; Department of Mechanical Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50670-901 Recife, PE, Brazil
Maria A. Gonzalez-Carmona
; Department of Mechanical Engineering, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, CEP 50670-901 Recife, PE, Brazil
Andrés F. Lazaro-Alvarado
; CREVER, Department of Mechanical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain
Alberto Coronas
; CREVER, Department of Mechanical Engineering, Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain
Abstract
The integration of absorption chillers in micro-cogeneration systems based on micro-gas turbines can be useful as an appropriate strategy to increase the total system energy efficiency. Since it is an area intensive in technology, it is necessary to develop and use models of simulation, which can predict the behavior of the whole system and of each component individually, at different operating conditions. This work is part of a research project in high efficiency cogeneration systems, whose purpose at this stage is to model a micro-cogeneration system, which is composed of a micro gas turbine, Capstone C30, a compact cross flow finned tube heat exchanger and an absorption chiller. The entire model is composed of specifically interconnected models, developed and validated for each component. The simulation of the microturbine used a thermodynamic analytic
model, which contains a procedure used to obtain the micro turbine characteristic performance curves, which is closed with the thermodynamic Brayton cycle model. In the cogeneration system discussed in this paper, the compact heat exchanger was used to
heat thermal oil, which drives an absorption chiller. It was designed, characterized and installed in a cogeneration system installed at the Centre d'Innovació Tecnològica en Revalorització Energètica i Refrigeració, Universtat Rovira i Virgili. Its design led to the
heat exchanger model, which was coupled with the micro turbine model. Presented in this work is a comparison between the data from the model and the experiments, demonstrating good agreement between both results.
Keywords
Cogeneration system; Micro gas turbine; Mathematical modeling; Absorption chiller; Partial load
Hrčak ID:
181488
URI
Publication date:
30.6.2017.
Visits: 1.637 *