Drvna industrija, Vol. 69 No. 4, 2018.
Izvorni znanstveni članak
https://doi.org/10.5552/drind.2018.1758
Silica (SiO2) Content on Mechanical Properties of Cement-Bonded Particleboard Manufactured from Lignocellulosic Materials
Morteza Nazerian
orcid.org/0000-0002-9319-2667
; Faculty of Energy Engineering and New Technology, Shahid Beheshti University, Iran
Hossin Assadolahpoor Nanaii
; Odjel za znanost o drvu i papiru, Sveučilište u Zabolu, Iran
Rahiim Mohebbi Gargarii
; Odjel za znanost o drvu i papiru, Sveučilište u Zabolu, Iran
Sažetak
The influence of Nano-SiO2 (NS) content and lignocellulosic material addition on hydration behaviour of cement paste was studied through measurement of hydration temperature, initial and final setting time of cement paste and compressive strength of hardened cement paste. Besides, the amount of NS, particle size of reed and bagasse as lignocellulosic materials and bagasse to reed particles weight ratio were selected as manufacturing variables for cement-bonded particleboard (CBPB) each at five levels. The relationships between independent parameters and output variables (modulus of rupture (MOR), modulus of elasticity (MOE) and internal bonding (IB)) were modeled using response surface methodology (RSM) based on mathematical model equations (second-order multiple linear regression model) by computer simulation programming. The results indicated that cement pastes containing 3 wt.% Nano-SiO2 content mixed with milled reed or bagasse particles enhanced maximum hydration temperature; however, the time of reaching the main rate peak shortened. Besides, the increase of SiO2 replacement shortened the setting time. On the other hand, using reed particles, initial and final setting times of cement prolonged, while bagasse particles shortened initial and final setting times. Analysis of variance (ANOVA) was performed to determine the adequacy of the mathematical model and its respective variables. The interaction effect curves of the independent variables obtained from simulations showed a good agreement between the measured MOR, MOE and IB of CBPB and predicted values obtained by the developed models, and hence, the proposed concept was verified.
Ključne riječi
cement-bonded particleboard; Nano-Silica; reed; bagasse; hydration; RSM
Hrčak ID:
213936
URI
Datum izdavanja:
28.12.2018.
Posjeta: 2.418 *