Skoči na glavni sadržaj

Stručni rad

Greenhouse gas emissions of the power sector in the Southeastern Europe

Vladimir Franki orcid id orcid.org/0000-0002-7723-3510 ; Energy Platform Living Lab, Zagreb
Alfredo Višković ; Energy Platform Living Lab, Zagreb
Darko Pavlović orcid id orcid.org/0000-0002-0064-0900 ; Plinacro d.o.o.


Puni tekst: hrvatski pdf 1.339 Kb

str. 33-41

preuzimanja: 606

citiraj

Preuzmi JATS datoteku


Sažetak

Global efforts to reduce greenhouse gas emissions are growing every year. The understanding that the quality of human life is directly related to the environmental impact of the electricity sector is at the heart of a new energy paradigm oriented towards decarbonizing energy processes. In this context, it is extremely important to be fully aware of how much CO2 emissions are released into the atmosphere by the electricity sector. The research presented in this paper analyses direct emissions from electricity generation in the countries of Southeast Europe (SEE). Also, the impact of the main factors influencing CO2 emissions is observed, such as: hydrological conditions, changes in demand, volatility of fuel prices and emission units.

Ključne riječi

CO2 emissions; emissions trading; electricity sector; neighbouring countries; Southeast Europe (SEE)

Hrčak ID:

249894

URI

https://hrcak.srce.hr/249894

Datum izdavanja:

14.1.2021.

Podaci na drugim jezicima: hrvatski

Posjeta: 1.900 *




Energetski sektor čini okosnicu gospodarstva, dostupnost i cijena energije određuje konkurentnost pojedine ekonomije, a količina energije koju osoba potroši određuje njen standard življenja. Nažalost, energetski sektor je i veliki onečišćivač. Zbog povećane svijesti o negativnom utjecaju energetskog sektora na okoliš, energetske strategije zemalja diljem svijeta okreću se održivim rješenjima. Samim time, cijeli sektor prolazi kroz fundamentalnu transformaciju svoje strukture. Ključni cilj ove transformacije je smanjenje štetnog utjecaja na okoliš ponajprije ograničavanjem globalnog zagrijavanja. Vodena para, metan i ugljični dioksid (CO2) zajedno s drugim atmosferskim plinovima apsorbiraju odlazeće infracrveno zračenje i time uzrokuju porast Zemljine temperature – ovaj fenomen poznat je kao efekt staklenika [1]. Kako je industrijski razvoj praćen povećanom emisijom CO2 u atmosferu, problem globalnog zagrijavanja pojavio se kao globalno pitanje koje je izazvalo značajnu zabrinutost istraživača i kreatora politike. Neke procjene zaključuju da je samo CO2 odgovoran za oko 64% pojačanog efekta staklenika [2]. Elektroenergetski sektor najveći je pojedinačni emiter CO2. Prema nedavnom izvješću IEA-e, ugljen, prirodni plin i nafta i dalje čine 39.3%, 22.9% i 4.1% udjela u ukupnoj proizvodnji električne energije [3]. Slijedom toga, upravno se od njega i očekuju najveći napori kada je u pitanju primjena novih tehnoloških rješenja koja mogu te iste emisije reducirati. Slijedom toga, okvirna konvencija Ujedinjenih nacija o klimatskim promjenama (UNFCCC) [4] i Kyoto protokol bile su jedne od prvih inicijativa usmjerenih ka ublažavanju globalnih emisija stakleničkih plinova. Razvoj energetskog sektora sada je više nego ikad usko povezan s njegovim učincima na okoliš. Uzevši u obzir sve navedeno, proučavanje emisija CO2 od primarne je važnosti pri odabiru pravog puta razvoja energetskog sektora. Puta koji nije jednostavno odabrati s obzirom da uspješnost energetskog sektora ne određuje isključivo dobit koju donosi, već cjenovna dostupnost, pouzdanost opskrbe i održivost energije koju pruža [5]. Kao rezultat povećane zabrinutosti u vezi s pitanjima zaštite okoliša, postoji niz pokušaja kvantificiranja količine emisija stakleničkih plinova u atmosferu. Poznate organizacije poput Međuvladinog panela za klimatske promjene (IPCC) [6] i UNFCCC [7] razvile su metodologije za izračunavanje emisija stakleničkih plinova kao alat za potporu borbi protiv klimatskih promjena. Uz to, postoji više istraživačkih radova koji analiziraju emisije energetskog sektora. Međutim, pažljivim ispitivanjem dostupne literature, može se vidjeti da postoji određeni „knowledge gap“ kad je riječ o utvrđivanju utjecaja tržišnih i regulatornih čimbenika na emisije ugljikovog dioksida od strane proizvođača električne energije. Iako postoje iznimke [8][9], radovi se uglavnom bave politikama i tehnologijama usmjerenim smanjenju CO2, no zanemaruju druge faktore koji utječu na emisije. Neka od područja istraživanja emisija uključuju emisijske performanse vozila [10][11][12], brodova [13], zrakoplova [14], zgrada [15][16], gradova [17], industrije čelika [18], cementne industrije [19][20] i građevinarstva [21]. Što se tiče emisija stakleničkih plinova elektroenergetskog sektora, radovi se većinom fokusiraju na potencijal smanjenja emisija istražujući učinke optimizacije voznog reda elektrana [22], korištenje komunalnog krutog otpada [23] i proizvodnje energije iz biomase [24] i putem kogeneracije [25][26]. Pregledom dostupne literature može se zamijetiti manjak radova fokusiranih na razvijanje metodologija za predviđanje emisija [27]. Ovaj rad analizira emisije CO2 elektroenergetskog sektora gravitirajuće regije, odnosno Jugoistočne Europe (JIE). Kao prvo, uspostavljen je matematički okvir potreban za postupak optimizacije elektroenergetskog tržišta. Prikupljena je detaljna baza podataka o elektroenergetskim sektorima promatranih zemalja temeljem koje je stvoren virtualni model elektroenergetskog sustava JIE. Nakon provedene tržišne analize, utvrđene su izravne emisije CO2 nastale zbog proizvodnje električne energije. Izrađena je analiza osjetljivosti koja proučava utjecaj odabranih tržišnih čimbenika na emisije CO2 i prikazana je usporedba s referentnim scenarijem. Posebna pažnja posvećena je utjecaju cijena emisijskih dozvola na same emisije. Nakon uvoda u temu i pregleda dostupne literature, u drugom poglavlju prikazana je metodologija istraživanja. Treće poglavlje prikazuje područje interesa tržišne analize, dok četvrto donosi zaključak popraćen diskusijom rezultata.

Zahvale

Tekst zahvale

Appendices

Appendix

Tekst appendixa

References

1. 

, author. 2007."In: climate change 2007: the physical science basis, contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change". Intergovernmental Panel on Climate Change (IPCC) Geneva, World Meteorological Organization/United Nations Environment Program. ():

2. 

, author. 1990."Policymaker’s summary of the scientific assessment of climate change; report to IPCC from working group". Intergovernmental Panel on Climate Change (IPCC), Meteorological Office: Branknell, United Kingdom. ():

3. 

, author. 2017."World energy outlook 2017. Paris: OECD/IEA". International Energy Agency. ():

4. 

, author. 1992."Proceedings of the Convention on Climate Change on the Work of the Second Part of its Fifth session". United Nations, United Nations Framework Convention on Climate Change. ():

5. 

Franki V.; ; Višković A. , authors. 1986."Energy security, policy and technology in South East Europe". Presenting and applying an energy security index to Croatia, Energy . (90):494–507

6. 

Eggleston H.S.; ; Buendia L.; ; Miwa K.; ; Ngara T.; ; Tanabe K. , authors. 2006."IPCC Guidelines for National Greenhouse Gas Inventories". [1] National Greenhouse Gas Inventories Programme. The Institute for Global Environmental Strategies, Japan. ():

7. 

, author. 2010."UNFCCC, Project Search". United Nations Framework Convention on Climate Change, Bonn. ():

8. 

Akimoto K.; ; Sano F.; ; Homma T.; ; Oda J.; ; Nagashima M.; ; Kii M. , authors. 2010."Estimates of GHG emission reduction potential by country, sector, and cost". Energy Policy. (38):3384–3393

9. 

Syri S.; ; Lehtilä A.; ; Ekholm T.; ; Savolainen I.; ; Holttinen H.; ; Peltola E. , authors. 2008."Global energy and emissions scenarios for effective climate change mitigation—Deterministic and stochastic scenarios with the TIAM model". International Journal of Greenhouse Gas Control. (2):274–285

10. 

Rentziou A.; ; Gkritza K.; ; Souleyrette R.R. , authors. 2012."VMT, energy consumption, and GHG emissions forecasting for passenger transportation". Transportation Research Part A: Policy and Practice. (46):487–500

11. 

Macedo V.C.; ; Daemme L.C.; ; Penteado R.; ; da Motta H.N.; ; Corrêa S.M. , authors. 2017."BTEX emissions from flex fuel motorcycles". Atmospheric Pollution Research. (8):1160–1169

12. 

D’Angelo M.; ; González A.E.; ; Rezzano Tizze N. , authors. 2018."First approach to exhaust emissions characterization of light vehicles in Montevideo". Science of The Total Environment. (618):1071–1078

13. 

Chen L.; ; Yip T.L.; ; Mou J. , authors. 2018."Provision of Emission Control Area and the impact on shipping route choice and ship emissions". Transportation Research Part D: Transport and Environment. (58):280–291

14. 

Zaporozhets O.; ; Synylo K. , authors. 2017."Improvements on aircraft engine emission and emission inventory asesessment inside the airport are". Energy. (140):1350–1357

15. 

Cao S.; ; Alanne K. , authors. 2018."The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle". Applied Energy. (211):639–661

16. 

Wiik M.K.; ; Fufa S.M.; ; Kristjansdottir T.; ; Andresen I. , authors. 2018."Lessons learnt from embodied GHG emission calculations in zero emission buildings (ZEBs) from the Norwegian ZEB research centre". Energy and Buildings, In press. ():

17. 

Zhou Z.; ; Liu C.; ; Zeng X.; ; Jiang Y.; ; Liu W. , authors. 2018."Carbon emission performance evaluation and allocation in Chinese cities". Journal of Cleaner Production. (172):1254–1272

18. 

Sodsai P.; ; Rachdawong P. , authors. 2018."The current situation on CO2 emissions from the steel industry in Thailand and mitigation options". International Journal of Greenhouse Gas Control. (6):48–55

19. 

Matar W.; ; Elshurafa A.M. , authors. 2017."Striking a balance between profit and carbon dioxide emissions in the Saudi cement industry". International Journal of Greenhouse Gas Control. (61):111–123

20. 

Deja J.; ; Uliasz-Bochenczyk A.; ; Mokrzycki E. , authors. 2010."CO2 emissions from Polish cement industry". International Journal of Greenhouse Gas Control. (4):583–588

21. 

Ji Y.; ; Li K.; ; Liu G.; ; Shrestha A.; ; Jing J. , authors. 2018."Comparing greenhouse gas emissions of precast in-situ and conventional construction methods". Journal of Cleaner Production. (173):124–134

22. 

Geng Z.; ; Conejo A.J.; ; Chen Q.; ; Kang C. , authors. 2018."Power generation scheduling considering stochastic emission limits". International Journal of Electrical Power and Energy Systems. (95):374–383

23. 

Couth R.; ; Trois C.; ; Vaughan-Jones S. , authors. 2011."Modelling of greenhouse gas emissions from municipal solid waste disposal in Africa". International Journal of Greenhouse Gas Control. (5):1443–1453

24. 

Dornburg V.; ; van Dam J.; ; Faaij A. , authors. 2007."Estimating GHG emission mitigation supply curves of large-scale biomass use on a country level". Biomass and Bioenergy. (31):46–65

25. 

Chicco G.; ; Mancarella P. , authors. 2008."Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators". Energy. (33):410–417

26. 

Mancarella P.; ; Chicco G. , authors. 2008."Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases". Energy. (33):418–430

27. 

Antanasijević D.Z.; ; Ristić M.Đ.; ; Perić-Grujić A.A.; ; Pocajt V.V. , authors. 2014."Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis". International Journal of Greenhouse Gas Control. (20):244–253

28. 

Rubin E.S.; ; Chen C.; ; Rao A.B. , authors. 2007."Cost and performance of fossil fuel power plants with CO2 capture and storage". Energy Policy . (35):4444–4454

29. 

Connloy D.; ; Lund H.; ; Mathiesen B.V.; ; Leahy M. , authors. 2010."A review of computer tools for analysing the integration of renewable energy into various energy systems". Applied Energy. (87):1059–1082

30. 

, author. 2020."CESI, Programmazione di medio termine (PROMED)". ():. urihttps://www.cesi.it/Pages/default.aspx

31. 

, author. 2020."Energy Platform Living Lab Zagreb (EPLL), Energy Observatory". ():. urihttps://www.epll.eu/

32. 

Višković A.; ; Franki V. , authors. 2015."Coal Based Electricity Generation in South East Europe: A Case Study for Croatia". International journal of energy economics and policy. (5):206–230

33. 

Višković A.; ; Franki V.; ; Valentić V. , authors. 2014."CCS (carbon capture and storage) investment possibility in South East Europe". A case study for Croatia. Energy. (70):325–337

34. 

Višković A.; ; Franki V. , authors. 2015."Status of Croatia’s energy sector framework: Progress, potential, challenges and recommendations". Thermal science. (19):73–93

35. 

Banovac E.; ; Glavić M.; ; Tešnjak S. , authors. 2009."Establishing an Efficient Regulatory Mechanism − Prerequisite for Successful Energy Activities Regulation". Energy. 34(2):178–189

36. 

Banovac E.; ; Gelo T.; ; Šimurina J. , authors. 2007."Analysis of Economic Characteristics of a Tariff System for Thermal Energy Activities". Energy Policy. 35(11):5591–5600

37. 

Banovac E.; ; Bogdan Ž.; ; Kuzle I. , authors. 2007."Choosing the Optimal Approach to Define the Methodology of a Tariff System for Thermal Energy Activities". Strojarstvo. 49(6):409–420

38. 

Višković A.; ; Franki V.; ; Valentić V. , authors. 2014."Effect of regulation on power-plant operation and investment in the South East Europe Market". An analysis of two cases. Utilities policy. (30):8–17

39. 

, author. 2020."EENTSO-E". ():. urihhttp://www.entsoe.eu/

40. 

, author. 2020."Powernext". ():. urihttps://www.powernext.com/

41. 

, author. 2020."S and P Global Platts ". ():. urihttps://www.spglobal.com/platts/en

42. 

Pavlović D.; ; Banovac E.; ; Vištica N. , authors. 2018."Defining a composite index for measuring natural gas supply security". The Croatian gas market case. Energy Policy. (114):30–38

43. 

De Richter R.K.; ; Ming T.; ; Caillol S.; ; Liu W. , authors. 2016."Fighting global warming by GHG removal: Destroying CFCs and HCFCs in solar-wind power plant hybrids producing renewable energy with no-intermittency". International Journal of Greenhouse Gas Control. (49):449–472

44. 

Komušanac I.; ; Ćosić B.; ; Duić N. , authors. 2016."Impact of high penetration of wind and solar PV generation on the country power system load". The case study of Croatia. Applied Energy. (184):1470–1482

45. 

Khorshidi Y.; ; Florin N.H.; ; Ho M.T.; Wiley D.E. , authors. 2016."Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO2 capture". International Journal of Greenhouse Gas Control. (49):343–363

46. 

Münster M.; ; Meibom P. , authors. 2011."Optimization of use of waste in the future energy system". Energy. (36):1612–1622

47. 

May G.J.; ; Davidson A.; ; Monahov B. , authors. 2011."Lead batteries for utility energy storage: A review". Journal of Energy Storage. (15):145–157

48. 

Višković A.; ; Valentić V.; ; Franki V. , authors. 2013."The impact of carbon prices on CCS investment in South East Europe". Economics and policy of energy and the environment. (3):91–120

49. 

Višković A.; ; Šapić A.; ; Franki V. , authors. 2019."Carbon capture and storage retrofit". Case study for Croatia. Energy sources, Part A: Utilization and Environmental Effects. ():

50. 

Dong F.; ; Yu B.; ; Hadachin T.; ; Dai Y.; ; Wang Y.; ; Zhang S.; ; Long R. , authors. 2018."Drivers of carbon emission intensity change in China". Resources, Conservation and Recycling . (129):187–201

51. 

Sim S.G.; ; Lin H.C. , authors. 2018."Competitive dominance of emission trading over Pigouvian taxation in a globalized economy". Economics Letters. (163):158–161

52. 

Pavlović D.; ; Banovac E. , authors. 2020."Natural gas as a geopolitical factor of energy transition". Proceedings of the 35th International Scientific and Expert Meeting of Gas Professionals. ():1–12


This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.