Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.32985/ijeces.14.1.11

Support Vector Regression Machine Learning based Maximum Power Point Tracking for Solar Photovoltaic systems

P. Venkata Mahesh ; Research Scholar, Department of Electronics and Instrumentation Engineering, Annamalai University, Chidambaram, Tamilnadu-608002, India.
S. Meyyappan ; Assistant Professor, Department of Electronics and Instrumentation Engineering, Annamalai University, Chidambaram, Tamilnadu-608002, India. & Assistant Professor, Department of Instrumentation Engineering, Madras Institute of Technology, Chennai, Tamil Nadu-600044, India.
RamaKoteswaraRao Alla orcid id orcid.org/0000-0002-5138-6463 ; Associate Professor, Department of Electrical and Electronics Engineering, RVR & JC College of Engineering, Guntur, Andhra Pradesh-522019, India.


Puni tekst: engleski pdf 2.689 Kb

str. 100-108

preuzimanja: 391

citiraj


Sažetak

Photovoltaic panels use the sun’s radiation on their surface to convert solar energy into electricity. This process is dependent on the temperature of the surface and the intensity of the sun's radiation. To escalate the energy transformation, the solar system must be functioned at its maximum power point (MPP). Every maximum power point tracking (MPPT) technique has a distinct mechanism for tracking maximum power point (MPP). The support vector machine (SVM) regression algorithm is used in this work to develop a novel method for tracking the MPP of a PV panel. The solar panel technical parameters were used to prepare the data for training and testing the SVM model. The SVM algorithm predicts the PV panel's maximum power and relevant voltage for specific irradiation and temperature. The duty cycle of the boost converter corresponding to the maximum power was evaluated using the predicted values. The result of the simulation shows that the proposed control strategy forces the solar panel to work near the predicted MPP. The SVM regression control strategy gives the MPP tracking efficiency of more than 94% for the solar PV system despite variable climatic conditions during its stable state operation. In addition, a comparative analysis of the proposed method was carried out with the existing approaches to confirm the effective tracking of the proposed technique.

Ključne riječi

Boost converter; MPPT; Photovoltaic system; Regression machine learning; Support vector machine;

Hrčak ID:

292686

URI

https://hrcak.srce.hr/292686

Datum izdavanja:

26.1.2023.

Posjeta: 1.177 *