Izvorni znanstveni članak
https://doi.org/10.24138/jcomss-2022-0050
Assessment of Transmitted Power Density in the Planar Multilayer Tissue Model due to Radiation from Dipole Antenna
Dragan Poljak
; Department of Electronics and Computer Science, FESB, Univ. of Split, Croatia
Anna Šušnjara
; Department of Electronics and Computer Science, FESB, Univ. of Split, Croatia
Ana Fišić
; Ericsson Nikola Tesla d. d., Zagreb
Sažetak
Recent relevant safety guidelines IEEE-Std C95.1- 2019 and ICNIRP-RF Guidelines 2020 have converged towards 6 GHz as a transition frequency from specific absorption rate (SAR), as basic restriction quantity, to absorbed power density (APD). Namely, the penetration of electromagnetic waves into the human tissue rapidly decreases as frequency increases, therefore, tissue heating can be considered as superficial above 6 GHz. However, besides the APD, an alternative internal dosimetric quantity transmitted power density or TPD is sometimes computed since its relation to SAR is more obvious and is easier to obtain. This paper deals with an analytical/numerical approach to determine TPD in planar multi-layered model of the human tissue exposed to the dipole antenna radiation. Analytical approach deals with assumed sinusoidal current distribution, while numerical approach pertains to the determination of current by solving the corresponding Pocklington integro-differential equation via Galerkin-Bubnov Indirect Boundary Element Method. The novelty presented in this paper with respect to previous work is a multilayer geometry whose effects are considered via the corresponding Fresnel plane wave reflection/transmission approximation. Some illustrative results for current distribution, transmitted field, volume power density (VPD) and TPD at various frequencies and distances of the antenna from the interface are given.
Ključne riječi
analytical/numerical approach; current distribution; dipole antenna; planar multilayer tissue model; plane wave approximation
Hrčak ID:
299769
URI
Datum izdavanja:
31.3.2023.
Posjeta: 567 *