Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.18047/poljo.29.2.7

Evaluation of Ensemble Machine Learning for Geospatial Prediction of Soil Iron in Croatia

Dorijan Radočaj ; Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet agrobiotehničkih znanosti Osijek, Vladimira Preloga 1, 31000 Osijek, Hrvatska *
Nedim Tuno ; Sveučilište u Sarajevu, Građevinski fakultet, Patriotske lige 30, 71000 Sarajevo, Bosna i Hercegovina
Admir Mulahusić ; Sveučilište u Sarajevu, Građevinski fakultet, Patriotske lige 30, 71000 Sarajevo, Bosna i Hercegovina
Mladen Jurišić ; Sveučilište Josipa Jurja Strossmayera u Osijeku, Fakultet agrobiotehničkih znanosti Osijek, Vladimira Preloga 1, 31000 Osijek, Hrvatska

* Autor za dopisivanje.


Puni tekst: engleski pdf 762 Kb

str. 53-61

preuzimanja: 179

citiraj


Sažetak

Soil fertility is pivotal for agricultural productivity, and iron (Fe) is a critical micro- nutrient essential for a successful crop development. This study investigates a potential of ensemble machine-learning methods in geospatial prediction of soil Fe in Croatia. Using a dataset of 686 soil samples, three individual machine-learning methods, including the extreme gradient boosting (XGB), support vector machine (SVM), and Cubist, as well as their ensemble, were evaluated for the soil Fe predi- ction. The ensemble method outperformed the individual models, exhibiting a higher prediction accuracy expressed by the coefficient of determination (R2 = 0.578), with a lower root-mean-square error (RMSE = 0.837) and the mean absolute error (MAE = 0.550). The soil clay content emerged as the most influential predictor, followed by the sand content, pH values, and select bioclimatic variables. This study’s results demonstrate the effectiveness of ensemble machine learning in an accurate predicti- on of soil Fe content and contribute to an informed decision-making in sustainable agricultural land-use planning and management. By including the complementary machine-learning methods into an ensemble with the representative environmental covariates, a geospatial prediction aids to a reliable comprehension of soil proper- ties and their spatial variability.

Ključne riječi

soil samples; extreme gradient boosting; support vector machine; cubist; land-use planning

Hrčak ID:

311686

URI

https://hrcak.srce.hr/311686

Datum izdavanja:

19.12.2023.

Podaci na drugim jezicima: hrvatski

Posjeta: 633 *