Skoči na glavni sadržaj

Izvorni znanstveni članak

https://doi.org/10.1080/00051144.2023.2196114

An automated cervical cancer detection scheme using deeply supervised shuffle attention modified convolutional neural network model

T. Kanimozhi ; Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India *
Franklin J. Vijay ; Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India

* Dopisni autor.


Puni tekst: engleski pdf 2.763 Kb

str. 518-528

preuzimanja: 94

citiraj


Sažetak

Cervical malignant growth is the fourth most typical reason for disease demise in women around the world. In developing countries, women don’t approach sufficient screening methods because of the costly procedures to undergo examination regularly, scarce awareness and lack of access to the medical centre. Recently, deep learning-based radiomic methods have been introduced in differentiating vessel invasion from non-vessel invasion in Cervical Cancer (CC) by multi-parametric Magnetic Resonance Imaging (MRI). However, this model doesn’t produce sufficient results. In this work, the MRI images are initially pre-processed using bilateral filtering. After pre-processing, the image is segmented by modified U-Net model in order to identify the cancerous region. Extraction of deep semantic information from images by using residual blocks in the processes of contractions and expansions. The last layer of the contracting route uses tightly coupled convolutions in the second phase to speed up feature recycling and feature propagation. It was inferred from the observations that the proposed model was effective as a predictive tool for detecting vessel invasions in preoperative early stages of CC. Proposed model produces 94.00% detection accuracy which is better than the other existing methods.

Ključne riječi

Cervical cancer; MRI data; pre-processing; modified U-net model; residual blocks and densely connected convolutions

Hrčak ID:

315769

URI

https://hrcak.srce.hr/315769

Datum izdavanja:

5.4.2023.

Posjeta: 334 *