Skip to the main content

Original scientific paper

https://doi.org/10.15255/CABEQ.2015.2202

Exergoeconomic Distillation Sequencing by Multi-objective Optimization through a Hybrid Genetic Algorithm

Y. Özçelik orcid id orcid.org/0000-0002-9484-7020 ; a) Yuzuncu Yıl University, Faculty of Engineering and Architecture, Department of Chemical Engineering, Kampüs, Van, 65080, Türkiye; b) Ege University, Faculty of Engineering, Department of Chemical Engineering, Bornova, İzmir, 35100, Türkiye
S. O. Mert orcid id orcid.org/0000-0002-7721-1629 ; Yuzuncu Yıl University, Faculty of Engineering and Architecture, Department of Chemical Engineering, Kampüs, Van, 65080, Türkiye


Full text: english pdf 912 Kb

page 305-315

downloads: 612

cite


Abstract

While trying to optimize sharp distillation processes, the number of possible column sequences significantly increases as the number of components that make up the feed mixture increases. As a result, proper sequencing with maximum exergetic profit and minimum exergy destruction becomes harder to achieve. In this study, an exergoeconomic multi-objective optimization was applied to the distillation sequences of three separate hydrocarbon mixture cases, by means of a genetic-algorithm-based solver software. A
computer program (DISMO) was developed in-house to achieve this functionality. The results indicate that the created algorithm was quite applicable in determining the optimum sequencing in distillation, as it successfully created the Pareto Solution Set and suggested the optimum configurations. This study also presented an opportunity to conduct a parametric investigation on various weighting factors for objective functions. As the importance given to a specific objective was increased, the optimization results had a tendency to favour that specific objective through arrangement of sequencing as expected,
though the profit and sequencing converged to a single result after a certain threshold.

Keywords

distillation sequencing; genetic algorithm; exergoeconomy; multi-objective optimization; distillation

Hrčak ID:

167259

URI

https://hrcak.srce.hr/167259

Publication date:

6.10.2016.

Visits: 1.379 *