Drvna industrija, Vol. 70 No. 1, 2019.
Original scientific paper
https://doi.org/10.5552/drvind.2019.1825
Stress and Strain Analysis of Plywood Seat Shell
Seid Hajdarević
orcid.org/0000-0002-3636-010X
; University of Sarajevo, Mechanical Engineering Faculty, Sarajevo, Bosnia and Herzegovina
Murčo Obućina
; University of Sarajevo, Mechanical Engineering Faculty, Sarajevo, Bosnia and Herzegovina
Elmedin Mešić
orcid.org/0000-0002-3695-416X
; University of Sarajevo, Mechanical Engineering Faculty, Sarajevo, Bosnia and Herzegovina
Sandra Martinović
; University of Sarajevo, Mechanical Engineering Faculty, Sarajevo, Bosnia and Herzegovina
Abstract
In this paper, the stress and strain analysis of common laminated wood seat shell is performed. Experimental stiffness evaluation is conducted by measuring displacement of the point on the backrest, and experimental stress analysis is carried out by tensometric measuring at the critical transition area from the seat to the backrest. Finite element analysis is carried out layer by layer with a “2D linear elastic model” for orthotropic materials. Good matching is found between numerical and experimental results of displacement. It is also shown that the results of the principal stress in the measurement points of the seat shell compare favourably with experimental data. The applied in-plane stress analysis of each individual veneer is not applicable for interlaminar stress calculations that are a significant factor in curved forms of laminated wood. Curved forms of laminated wood products require more complex numerical analysis, but the method can be used to achieve approximate data in early phase of product design.
Keywords
laminated wood; seat shell; tensometric measuring; strain gauges; stress; strain; FEM
Hrčak ID:
218211
URI
Publication date:
26.3.2019.
Visits: 2.090 *