Original scientific paper
https://doi.org/10.31341/jios.45.2.5
Spectral Indexes Evaluation for Satellite Images Classification using CNN
Vladyslav Yaloveha
orcid.org/0000-0001-7109-9405
; Faculty of Computer and Information Technologies, National Technical University “KhPI”, Kharkiv, Ukraine
Daria Hlavcheva
; Faculty of Computer and Information Technologies, National Technical University “KhPI”, Kharkiv, Ukraine
Andrii Podorozhniak
orcid.org/0000-0002-6688-8407
; Faculty of Computer and Information Technologies, National Technical University “KhPI”, Kharkiv, Ukraine
Abstract
Deep learning approaches are applied for a wide variety of problems, they are being used in the remote sensing field of study and showed high performance. Recent studies have demonstrated the efficiency of using spectral indexes in classification problems, because of accuracy and F1 score increasing in comparison with the usage of only RGB channels. The paper studies the problem of classification satellite images on the EuroSAT dataset using the proposed convolutional neural network. In the research set of the most used spectral indexes have been selected and calculated on the EuroSAT dataset. Then, a novel comparative analysis of spectral indexes was carried out. It has been established that the most significant set of indexes (NDVI, NDWI, GNDVI) increased classification accuracy from 64.72% to 84.19% and F1 score from 63.89% to 84.05%. The biggest improvement was obtained for River, Highway and PermanentCrop classes.
Keywords
Earth remote sensing; deep learning; spectral indexes; convolutional neural networks; EuroSAT
Hrčak ID:
270688
URI
Publication date:
15.12.2021.
Visits: 1.118 *