Skip to the main content

Professional paper

https://doi.org/10.19279/TVZ.PD.2023-11-4-04

ANSAMBL METODE STROJNOG UČENJA

Aleksandar , Stojanović ; Zagreb University of Applied Sciences, Vrbik 8, 10000 Zagreb, Croatia
Željko Kovačević ; Zagreb University of Applied Sciences, Vrbik 8, 10000 Zagreb, Croatia
Danko Ivošević ; Zagreb University of Applied Sciences, Vrbik 8, 10000 Zagreb, Croatia


Full text: croatian pdf 896 Kb

page 245-252

downloads: 118

cite


Abstract

Ansambl metode strojnog učenja privukle su značajnu pažnju posljednjih godina zbog svoje sposobnosti poboljšanja točnosti i robusnosti prediktivnih modela. Ove metode kombiniraju rezultate više pojedinačnih modela kako bi proizvele konačno predviđanje. Ansambl metode otpornije su na odstupanja u podacima. Mogu se primijeniti na širok raspon problema u području strojnog učenja, uključujući klasifikaciju, regresiju i klasteriranje. Općenito mogu pomoći u poboljšanju izvedbe modela strojnog učenja i naširoko se koriste u praksi. Zbog njihove velike važnosti i značaja ovaj članak pruža pregled nekih od najčešće korištenih ansambl metoda u strojnom učenju, uključujući pakiranje, pojačavanje i slaganje, te opisuje prednosti i ograničenja svakog od ovih pristupa.

Keywords

ansambl; strojno učenje; pakiranje; pojačavanje; slaganje

Hrčak ID:

318105

URI

https://hrcak.srce.hr/318105

Publication date:

5.2.2024.

Article data in other languages: english

Visits: 422 *