Skip to the main content

Original scientific paper

https://doi.org/10.17559/TV-20240520001619

Enhancing Lifetime and Performance in Wireless Sensor Networks with Cooperative Stabilized Proactive Energy-Aware Cluster Routing Protocol

Purushothaman R. ; Department of ECE, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India *
Narmadha R. ; Department of ECE, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India

* Corresponding author.


Full text: english pdf 996 Kb

page 1908-1914

downloads: 3

cite


Abstract

The recent development of wireless communication technology empowers sensing, monitoring, and data transfer in remote areas through a heterogeneous model. However, managing energy levels for data transfer presents challenges, as energy consumption can lead to packet loss, and delay tolerance can cause latency failures, ultimately impacting network lifetime. To address this, we propose the Cooperative Stabilized Proactive Energy-Aware Cluster Routing Protocol (CSP-EACRP) based on self-balanced cooperative communication in wireless sensor networks. Initially, we estimate neighbour discovery node level depletion and determine the Node response behaviour rate to assess the active transmission level, considering energy, delay, transmission, drop ratio, and latency. This estimation helps determine the absolute mean weight when considering active nodes. We then construct the Adaptive Petal Spider Ant Colony Cluster Algorithm (APSAC2A) to enhance link stability for route optimization. Subsequently, the Cooperative Stabilized Proactive Energy-Aware Cluster Routing Protocol (CSP-EARP) is developed to facilitate self-balanced congestion routing (SBCR) with support from the Lookup Energy Constraint Duty Cycle (LECDC), aiming to improve network lifetime. This, in turn, enhances throughput performance and distributes routing energy efficiently among one or more nodes. Compared to existing transmission models, this proposed system prolongs network lifetime and improves Quality of Service (QoS) performance, yielding superior results. The proposed system achieves energy-efficient data transfer, enhancing delay tolerance at the latency level and increasing throughput to improve communication lifetime.

Keywords

cluster routing protocol; delay tolerance; energy-efficient routing; quality of service (QoS); wireless sensor networks (WSNs)

Hrčak ID:

321912

URI

https://hrcak.srce.hr/321912

Publication date:

31.10.2024.

Visits: 9 *