Skip to the main content

Original scientific paper

Recent Sediments of Makirina Cove (Northern Dalmatia, Croatia): Their Origin Viewed Through a Multidisciplinary Approach

M. Šparica
G. Koch
M. Belak
S. Miko
M. Šparica-Miko
D. Vilićić
T. Dolenec
S. Bergant
S. Lojen
P. Vreča
M. Dolenec
N. Ogrinc.
H. Ibrahimpašić


Full text: english pdf 8.468 Kb

page 21-71

downloads: 1.112

cite


Abstract

Makirina Cove was formed by the Holocene sea-level rise which caused a marine ingression into the depression formed within Albian–Cenomanian dolomites at approximately 4.5 ka B.P. At present, Makirina Cove represents an restricted, stressed, shallow-marine (<2m) ecosystem characterized by varying seawater temperatures (0–35°C) as well as fluctuating salinities (up to 41‰) affected by seasonally enhanced evaporation, continuous freshwater supply through on-shore and submarine springs associated with the coastal karst area and surface run-off episodes. These environmental conditions have been conducive to high primary production of organic matter resulting in the formation of organic-rich deposits which contain up to 5 wt.% of organic carbon. Up to the present times, 3.5 m of sediments have been deposited indicating a relatively high sedimentation rate estimated at 0.75 m/1.0 ka in the northern central part of the Cove.

The sediments are being deposited mostly as poorly sorted clayey–sandy silts. The distribution and concentration of most of the chemical elements is dependant on the mineralogical composition and granulometric features of the Makirina sediments, which show values more or less similar to those from the Central Adriatic. Accordingly, there is a positive correlation with Al and K concentrations increasing off-shore and with the depth being associated with increasing concentrations of clay minerals within the clay fraction. The same holds true for concentrations of some trace elements, especially Mo and Se which is consistent with the distribution pattern of sulphides.

Selenium is preferentially enriched in authigenic pyrite and it is probably the major source of Se in the Makirina Cove sediments. The concentrations of Ca, Mg and Sr decrease off-shore and they are linked to the composition of the surrounding carbonate rocks. The saturation indices show that the water is supersaturated with respect to carbonates enabling the precipitation of authigenic amorphous or crystalline carbonate phases from the pore water in the upper segment of the sediment column. According to the oxygen isotopic (δ18O) composition, molluscs precipitated their carbonate shells mostly during warmer periods (May to November) at or near isotopic equilibrium with their ambient waters. The carbon isotopic δ13C composition of mollusc carbonate shells is environmentally affected due to oxidation and decomposition of organic matter as well as influxes of fresh water into the Cove, indicating their formation out of the predicted isotopic equilibrium with atmospheric CO2. Palynological and organic carbon isotopic (δ13C) composition shows that the sedimentary organic matter (SOM) is 70–90% lipid- and hydrogen-rich and on average 2/3 marine derived (mainly phytoplankton, bacteria and marine macrophytes) and 1/3 terrestrially derived (mainly woody tissue). The variations in composition of SOM have been noted as a function of the distance from the shore. The type and the preservation state of SOM and pyrite as well as the measurements of Eh, pH, total alkalinity, dissolved inorganic carbon (DIC) and the enrichment of redox-sensitive trace elements, indicate oxygen-depleted depositional conditions and that the sediment is highly reductive even in the uppermost segment at the sediment/water interface. According to the results obtained from the applied methods, the features of Makirina sediments strongly reflect the given depositional conditions within this restricted, stressed, shallow-marine environment where these organic-rich sediments originate, and may therefore serve as a calibration standard in further investigations.

Keywords

Recent sediments; Geological setting; Sedimentology; Mineralogy; Geochemistry; O and C stable isotopes; Palynofacies; Depositional environment; Makirina Cove; Northern Dalmatia; Croatia

Hrčak ID:

3668

URI

https://hrcak.srce.hr/3668

Publication date:

29.6.2005.

Visits: 1.972 *