Skip to the main content

Original scientific paper

https://doi.org/10.7305/automatika.53-4.281

Breast Density Classification Using Multiple Feature Selection

Mario Muštra orcid id orcid.org/0000-0003-1725-9505 ; Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
Mislav Grgić orcid id orcid.org/0000-0001-6230-3734 ; Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
Krešimir Delač ; Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia


Full text: english pdf 1.848 Kb

page 362-372

downloads: 925

cite


Abstract

Mammography as an x-ray method usually gives good results for lower density breasts while higher breast tissue densities significantly reduce the overall detection sensitivity and can lead to false negative results. In automatic detection algorithms knowledge about breast density can be useful for setting an appropriate decision threshold in order to produce more accurate detection. Because the overall intensity of mammograms is not directly correlated with the breast density we have decided to observe breast density as a texture classification problem. In this paper we propose breast density classification using feature selection process for different classifiers based on grayscale features of first and second order. In feature selection process different selection methods were used and obtained results show the improvement on overall classification by choosing the appropriate method and classifier. The classification accuracy has been tested on the mini-MIAS database and KBD-FER digital mammography database with different number of categories for each database. Obtained accuracy stretches between 97.2 % and 76.4 % for different number of categories.

Keywords

Breast Density; Feature Selection; Haralick Features; Soh Features; Classification

Hrčak ID:

94019

URI

https://hrcak.srce.hr/94019

Publication date:

5.12.2012.

Article data in other languages: croatian

Visits: 2.360 *