Original scientific paper
https://doi.org/10.7305/automatika.53-4.281
Klasifikacija dojki prema gustoći izborom značajki
Mario Muštra
orcid.org/0000-0003-1725-9505
; Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
Mislav Grgić
orcid.org/0000-0001-6230-3734
; Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
Krešimir Delač
; Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, HR-10000 Zagreb, Croatia
Abstract
Mamografija je rendgenska metoda koja daje dobre rezultate pri slikanju dojki koje imaju manju gustoću, dok joj osjetljivost značajno opada pri snimanju dojki veće gustoće i time može doći do lažno pozitivnih rezultata. Poznavanje gustoće dojke može biti korisno kod algoritama za automatsku detekciju zbog mogućnosti određivanja praga odluke na osnovi tog znanja. S obzirom na to da ukupni intenzitet pojedinog mamograma nije izravno povezan s gustoćom, odlučili smo se promatrati gustoću kao problem klasifikacije teksture. U ovom radu predlažemo klasifikaciju dojki prema gustoći izborom izdvojenih značajki intenziteta prvog i drugog reda za različite klasifikatore. Za određivanje prikladnih značajki koristili smo različite metode i tako dobivene značajke pokazale su bolju točnost klasifikacije za odabrane klasifikatore. Točnost klasifikacije testirali smo na bazi mamografskih slika mini-MIAS i bazi digitalnih mamografskih slika KBD-FER s različitim brojem kategorija u koje su slike bile podijeljene. Postignuta točnost klasifikacije proteže se između 97,2 % i 76,4 % za različit broj kategorija u koje su mamogrami podijeljeni.
Keywords
Gustoća dojke; izbor značajki; Haralickove značajke; Sohove značajke; klasifikacija
Hrčak ID:
94019
URI
Publication date:
5.12.2012.
Visits: 2.277 *