Skip to the main content

Original scientific paper

https://doi.org/10.17559/TV-20130718090927

Intelligent system for prediction of mechanical properties of material based on metallographic images

Matej Paulic ; Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
David Mocnik ; Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
Mirko Ficko ; Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
Joze Balic ; Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
Tomaz Irgolic ; Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
Simon Klancnik ; Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia


Full text: croatian pdf 2.071 Kb

page 1419-1424

downloads: 689

cite

Full text: english pdf 2.071 Kb

page 1419-1424

downloads: 1.025

cite


Abstract

This article presents developed intelligent system for prediction of mechanical properties of material based on metallographic images. The system is composed of two modules. The first module of the system is an algorithm for features extraction from metallographic images. The first algorithm reads metallographic image, which was obtained by microscope, followed by image features extraction with developed algorithm and in the end algorithm calculates proportions of the material microstructure. In this research we need to determine proportions of graphite, ferrite and ausferrite from metallographic images as accurately as possible. The second module of the developed system is a system for prediction of mechanical properties of material. Prediction of mechanical properties of material was performed by feed-forward artificial neural network. As inputs into artificial neural network calculated proportions of graphite, ferrite and ausferrite were used, as targets for training mechanical properties of material were used. Training of artificial neural network was performed on quite small database, but with parameters changing we succeeded. Artificial neural network learned to such extent that the error was acceptable. With the oriented neural network we successfully predicted mechanical properties for excluded sample.

Keywords

artificial neural network; factor of phase coherence between the surfaces; fracture toughness; image processing; mechanical properties; metallographic image; ultimate tensile strength; yield strength

Hrčak ID:

149370

URI

https://hrcak.srce.hr/149370

Publication date:

14.12.2015.

Article data in other languages: croatian

Visits: 3.580 *