Skip to the main content

Original scientific paper

https://doi.org/10.3336/gm.50.2.14

MORE ON STRONG SIZE PROPERTIES

Sergio Macías ; Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510, México
César Piceno ; Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510, México


Full text: english pdf 220 Kb

page 467-488

downloads: 541

cite


Abstract

We continue our study of strong size maps. We show that strong size levels for the n-fold hyperspace of a continuum contain (n-1)-cells. We give two constructions of strong size maps. We introduce reversible strong size properties. We prove that each of the following properties: being a continuum chainable continuum, being a locally connected continuum, and being a continuum with the property of Kelley, is a reversible strong size property. Following Professors Goodykoontz and Nadler, we define admissible strong size maps and show that the levels of admissible strong size maps for the n-fold hyperspace of a locally connected continuum are homeomorphic to the Hilbert cube. Professor Benjamín Espinoza defined Whitney preserving maps for the hyperspace of subcontinua of a continuum. We define strong size preserving maps and show that this class of maps coincides with the class of homeomorphisms.

Keywords

Absolute retract; acyclic continuum; admissible strong size map; continuum; continuum chainable continuum; Hilbert cube; n-fold hyperspace; n-fold symmetric product; retract; retraction; reversible strong size property; strong size level; strong size map; strong size properties

Hrčak ID:

150152

URI

https://hrcak.srce.hr/150152

Publication date:

29.12.2015.

Visits: 1.167 *