Glasnik matematički, Vol. 52 No. 2, 2017.
Original scientific paper
https://doi.org/10.3336/gm.52.2.09
Omega limits, prolongational limits and almost periodic points of a continuous flow via exterior spaces
José Manuel García Calcines
orcid.org/0000-0002-8969-6694
; Departamento de Matemáticas, Estadística e I.O., Universidad de La Laguna, 38200 La Laguna, Spain
Luis Javier Hernández Paricio
; Departamento de Matemáticas y Computación, Universidad de La Rioja, 26006 Logroño, Spain
María Teresa Rivas Rodríguez
; Departamento de Matemáticas y Computación, Universidad de La Rioja, 26006 Logroño, Spain
Abstract
In this paper we analyse some applications of the category of exterior spaces to the study of dynamical systems (flows). The limit space and end space of an exterior space are used to construct different types of limit spaces and end spaces of a dynamical system. In this work we analyse the relationships between the notions and constructions given by the exterior structures of a continuous flow and the more usual notions of omega-limits, first prolongational limits and several types of almost periodic points (Poisson-stable points, non-wandering points) of a flow.
Keywords
Dynamical system; exterior space; exterior flow; limit space functor; end space functor; Freudenthal end point; periodic point; agglomerative point; Poisson-stable point; omega limit; region of attraction; attractor, repeller; non wandering point; first prolongational limit of a point; Lagrange-stable point; dispersive flow; basin of an end point
Hrčak ID:
189336
URI
Publication date:
13.11.2017.
Visits: 1.578 *