Skip to the main content

Original scientific paper

Modeling of austenitic grain growth of 21-4N steel

H. C. Ji orcid id orcid.org/0000-0002-1592-6362 ; College of Mechanical Engineering, North China University of Science and Technology, Hebei, Tangshan, China; National Center for Materials Service Safety, University of Science and Technology Beijing, China; School of Mechanical Engineering, University of
Y. M. Li ; College of Mechanical Engineering, North China University of Science and Technology, Hebei, Tangshan, China
C. J. Ma ; College of Mechanical Engineering, North China University of Science and Technology, Hebei, Tangshan, China
H. Y. Long ; College of Mechanical Engineering, North China University of Science and Technology, Hebei, Tangshan, China
J. P. Liu ; School of Mechanical Engineering, University of Science and Technology Beijing, China
B. Y. Wang ; School of Mechanical Engineering, University of Science and Technology Beijing, China


Full text: english pdf 342 Kb

page 83-86

downloads: 921

cite


Abstract

The effect of grain growth on 21-4N heat resistant steel was studied by static grain growth test. The experimental results show that the temperature inhibits carbide grain growth is between 1 000 - 1 120 °C. When heat preservation time is over 40 min, the driving force of grain boundary is balanced with binding force of carbide nail, grain size will not grow up. There is no limit of grain size due to no pinning effect of carbides when the temperature is above 1 180 °C. Based on the theory of grain boundary migration, the grain growth model of 21-4N heat-resistant steel was established, and the relationship between the average grain size and the time of heat preservation at different temperatures was predicted.

Keywords

alloy steel 21-4N; grain growth model; microstructure; carbide pinning; grain boundary migration

Hrčak ID:

206502

URI

https://hrcak.srce.hr/206502

Publication date:

1.1.2019.

Visits: 1.847 *